
Support for Internet Information Services

on Digital Audio Broadcast Networks

MPhil Thesis

June 2000

Duncan McPherson

University of St Andrews, Scotland

& IBM Research, Zurich

Declaration

I, Duncan McPherson, hereby certify that this thesis, which is approximately 23000 words in length,

has been written by me, that it is the record of work carried out by me and that it has not been

submitted in any previous application for a higher degree.

date signature of candidate

I was admitted as a research student in March 1999 and as a candidate for the degree of MPhil

in March 1999; the higher study for which this is a record was carried out in the University of St.

Andrews between 1999 and 2000.

date signature of candidate

I hereby certify that the candidate has fulfilled the conditions of the Resolution and Regulations

appropriate for the degree of MPhil in the University of St. Andrews and that the candidate is

qualified to submit this thesis in application for that degree.

date signature of supervisor

In submitting this thesis to the University of St. Andrews I understand that I am giving per-

mission for it to be made available for use in accordance with the regulations of the University

Library for the time being in force, subject to any copyright vested in the work not being affected

thereby. I understand that the title and abstract will be published, and that a copy of the work may

be made and supplied to any bona fide library or research worker.

date signature of candidate

Abstract

This thesis investigates the use of Digital Audio Broadcast (DAB) radio technology for the efficient

distribution of World Wide Web Internet content to mobile wireless clients. Many popular web sites

remain static for a day or longer, which makes them particularly suitable for this type of broadcast

distribution. The design and development of a complete working reference system - DABWeb - is

described.

DABWeb also incorporates a means for service providers to support user profiles and charging

regimes. Transmissions are encrypted and customers are supplied with smart cards which decrypt

information being received. In contrast to the Public Key style of cryptography, a symmetrical

Remote Key algorithm - BEAST RK - is adopted. Bounds on the time needed for decryption oper-

ations to complete in order to cope with broadcast transmission data rates are derived.

Finally, DAB is a unidirectional broadcast standard so the usual Internet protocols which facili-

tate reliable transmission and user navigation on the Web are not available. These requirements

are addressed by client-side caching and server-side scheduling schemes. The concept of pseudo-

interactive Web surfing is introduced.

Preface

The DABWeb project has been developed within the context of the Pervasive Com-

puting group, part of the Applied Computer Science department of the IBM Research

Zurich Laboratory. The group is interested in the connectivity of mobile devices using

ad hoc networking systems (spontaneous networking). This allows devices to meet

“in the middle of the desert” and instantly become able to share resources that are

unique to each. The group purchase of a DAB Transmitter and several receivers re-

flects its interest in supplying data to pervasive computing devices in a mobile and

low cost manner.

The transmitter system hardware and all supporting software was supplied to IBM by

Rhode and Schwarz [45]. Receiver systems have been sourced from both BOSCH [18]

and Philips Electronics [41]. Additionally a special purpose Digital Signal Processor

card, used to decode the data stream output from a DAB receiver has been supplied

by the Fraunhofer Institute in Germany [51].

I would like to thank everyone at St Andrews who made it possible for me to spend

time working at IBM, and for considering my request to head to Switzerland at an

unusual time in my university career. I am very grateful to Colin Allison - my su-

pervisor at St Andrews - for taking on board this project and carefully reviewing my

work. Also to all the members of the DEAPspace project for their help in developing

DABWeb and reading my thesis. In particular Dr Dirk Husemann, for his constant

enthusiasm to make this project a success, Mike Nidd for his help with all things

computer related and Christian Rohner for helping me understand the equipment I

have been using.

Duncan McPherson

Zurich, January 1999

Contents

1 Introduction 1
1.1 Broadcasting Web Content . 2
1.2 Why use DAB? . 3
1.3 The Reference Implementation . 4
1.4 The suitability of DAB Networks for carrying Data Services 4

2 Related Work 7
2.1 Introduction . 7
2.2 The Boston Community Information System 7
2.3 The Datacycle Project . 8
2.4 Broadcast Disks . 9
2.5 The problem of scheduling . 9
2.6 The Teletext System . 10
2.7 An MHEG Carousel Scheduling Simulator 10
2.8 WebTV . 11
2.9 “Being Digital” . 12
2.10 IP Multicasting . 12
2.11 Reliability . 13
2.12 Multiple Unicast . 14
2.13 Other DAB based data service systems 15
2.14 Alternative wireless technologies . 15

3 Component Technologies 17
3.1 A DAB Transmission Network . 17
3.2 The DEAPspace project’s DAB testbed 19
3.3 Overview of the DABWeb System . 21
3.4 The MOT Protocol Stack . 22

3.4.1 The MOT Session layer . 23
3.4.2 Transmission and re-assembly of MOT Objects from data groups 24
3.4.3 Ensemble bandwidth allocation for MOT data streams 25
3.4.4 The MOT in Packet Mode . 25
3.4.5 The MOT in PAD mode . 26

3.5 WebFS (IBM Zurich Laboratory) . 27
3.5.1 WebFS Functionality . 28

– i –

CONTENTS CONTENTS

3.6 Security Considerations for DABWeb 30
3.6.1 Encryption of DABWeb content using BEAST RK 31
3.6.2 The cryptographic security of the BEAST algorithm 31
3.6.3 The IBM JavaCard System 32
3.6.4 Security of data held on a JavaCard 34
3.6.5 Overview of OpenCard . 35
3.6.6 OpenCard Card Services . 35

4 DABWeb Design 37
4.1 Design Goals . 37

4.1.1 Overview of the Server system 40
4.1.2 Overview of the Client system 41

4.2 Mapping a web tree structure onto a stream of MOT objects 43
4.3 Creation of a Virtual DAB data channel device driver 45
4.4 Using JavaCard to decrypt a multimedia data stream 46
4.5 Creation of OpenCard services for JavaCard 47
4.6 Functional units of the BEAST RK algorithm 50

4.6.1 BEAST encryption of MOT objects 52
4.6.2 Charging strategies for decryption using the JavaCard 53

5 DABWeb Implementation 54
5.1 Client Implementation details . 55
5.2 Server Implementation details . 57
5.3 Object Serialization for Network Protocols 57

5.3.1 Java based Serial Communications for PAD services 60
5.3.2 Transmission of MOT Streams in Packet Mode 61

5.4 The MOTDataChannel DAB Device Drivers 62
5.4.1 Implementation of the MOTDataChannel System 63
5.4.2 MOTDataChannel Device Driver Requirements 65
5.4.3 Integrating MOTDataChannel with the DABWeb Client . . . 65

5.5 Device Driver Implementations . 66
5.5.1 PAD data from the Philips 752 66
5.5.2 The Fraunhofer DSP PCMCIA card 67
5.5.3 The BOSCH DABCore stand alone receiver unit 68
5.5.4 The DABCore PCI based receiver 69

5.6 Integration of the BEAST RK system with DABWeb 69
5.6.1 Implementation of the BEAST RK system 70
5.6.2 The Development of the BEAST JavaCard Applet 72

5.7 The current state of the DABWeb reference implementation 73

6 Conclusion 76

– ii –

List of Figures

3.1 Illustration of a typical DAB Network 18
3.2 The DEAPspace project’s DAB transmitter 20
3.3 The components required for a DABWeb system 22
3.4 The MOT Protocol Stack (as used for both PAD and Packet modes) 24
3.5 Viewing www.st-andrews.ac.uk with WebFS 29
3.6 Overview of a JavaCard with two applets installed 33

4.1 Architectural overview of a DABWeb server system 39
4.2 Architectural overview of a DABWeb client system 42
4.3 Encoding the components that make up an MOT object 43
4.4 Lucks’s original diagram [48] of the BEAST RK encryption system . 50

5.1 Overview of a DABWeb client, showing data flow between the different
components . 56

5.2 The client side DABWeb GUI . 56
5.3 Structure details of a self-serializing APDU class written in Java . . . 59
5.4 Illustration of MOTDataChannel device driver architecture 62
5.5 The Philips 752 reference receiver . 67
5.6 The DSP card connected to a BOSCH DAB core receiver 67

– iii –

Chapter 1

Introduction

The rapidly growing demand for data-sharing using the Internet has led to the devel-

opment of many new technologies designed to make efficient use of network infrastruc-

ture. Some of these technologies take into consideration the asymmetric bandwidth

use by typical Internet users. For example, web surfing has a need for a high band-

width download channel, but only a low bandwidth upload channel. This asymmetry

exists because the upload channel is used to make download requests.

Another trend is the demand for a mobile wireless technology allowing Internet con-

tent to be browsed from anywhere using a small portable computing device. Wireless

point-to-point data links to the Internet over GSM1 or Satellite Telephones are expen-

sive, and are not efficiently scalable, since many users in close proximity may absorb

all available wireless bandwidth.

In this thesis I examine the use of Digital Audio Broadcast (DAB) radio technology

to distribute selected World Wide Web Internet content, helping meet the demand for

economical wireless web surfing. DAB provides a unidirectional data channel, which

can be used to distribute encoded Internet content to many clients. As DAB technol-

ogy provides no back-channel, web surfing users cannot select what to download and

so surfing is no longer a fully interactive experience. However if the Internet content

1Global System for Mobile communications - Europe wide standard for mobile telephones

– 1 –

1.1 Broadcasting Web Content Introduction

to be broadcast is chosen carefully to encompass many popular web sites, and then

cached by each user’s wireless client device, pseudo-interactive web surfing may still

be possible and result in a satisfying user experience.

1.1 Broadcasting Web Content

Many popular web sites are modified only on a daily basis or less frequently. These

static web sites are particularly suitable for broadcast channels instead of distribution

via the HTTP [54] protocol over multiple point to point TCP [13] links. With HTTP,

the network bandwidth requirements increase with the number of simultaneous ac-

cesses made to a web site. With DAB network technology a constant bandwidth is

needed to transport a selection of popular web sites to an unlimited number of client

systems.

The approach taken here is for service providers to broadcast each web site in its

entirety for client systems to download. In this situation server-side scheduling of

content is important to make sure client devices receive as many web sites of interest to

a specific user profile as possible. Also on the client side an appropriate caching scheme

is needed so that clients can intelligently cache web sites when they are received.

Because of the wireless nature of DAB, continuous access to the network may not be

possible, so clients should be able to cache web sites whenever they are received as a

continuous background process on the client. When users browse using the wireless

client they will be able to view only material contained in the cache of their device.

An encryption system which allows DAB web service providers to charge each client

for receiving content is also presented here. With the ability to encrypt all or part

of the broadcast data channel, a service provider can charge for the use of the keys

used to decrypt each web site and so implement a pay per view web browsing system.

The secret keys can be distributed on a tamperproof smart card - a service provider

would supply appropriately prepared smart cards.

– 2 –

1.2 Why use DAB? Introduction

Users of encrypted data services could presumably benefit by the increased quality of

content available since they are paying for the service. In the future such a charging

system could also be used to distribute software and music.

1.2 Why use DAB?

Digital Audio Broadcast (DAB) has been designed as a replacement for current ana-

logue radio services. In addition to superior near CD sound quality, the DAB network

standard also makes provision for the broadcast of data services. At the time of writ-

ing DAB network deployment is occurring worldwide, and though there are compet-

ing digital radio standards - Worldspace in Africa via satellite [65] and Teracom[60]

- DAB has emerged as the forerunner in Europe. Canada has adopted the DAB

standard, and DAB is currently being evaluated for use in the rest of North America.

If DAB services are extended to be Europe wide the price of a receiver unit should

drop sharply as has happened in the GSM cellphone market. Currently the DAB

standard has strong support from several large consumer electronics companies, who

manufacture receivers and other network infrastructure.

DAB receiver devices are less complex and so more portable than equivalent Digital

TV [12] devices, making them much more useful for a pervasive computing environ-

ment where they may be built into small computing devices, or used as a node in

a Personal Area Network (PAN). DAB receivers are also available in many new car

radios allowing small in-car clients to be designed which can download continuously.

Another possibility would be for the car’s client cache to synchronize with a user’s

palmtop based client cache over a high speed wireless connection, for example using

Bluetooth technology [2]. This way the car would always download web information

when available, and the user’s portable client device would synchronize with the car’s

cache when within range.

– 3 –

1.3 The Reference Implementation Introduction

1.3 The Reference Implementation

A complete DAB web content distribution system has been implemented here, named

the DABWeb system. DABWeb can be used as a reference design for the creation of

future commercial DABWeb systems, to hold data service trials, and to test content

scheduling and charging strategies.

The concept of a carousel is used to indicate a means of scheduling broadcast data

parts of a broadcast data stream that may be repeated more than once. For the

purposes of DABWeb each carousel should be one web site - a group of web pages

collected by Internet URL2 address. Scheduling the same carousel to be broadcast

more than once for example over the course of a day, allows more receiver clients

to cache carousels of interest. In this way DABWeb can still cache carousels even if

DAB radio reception is not continuous because of radio interference. Further research

is needed to determine the optimum scheduling strategies for carousels of different

content types.

1.4 The suitability of DAB Networks for carrying Data Ser-

vices

The DAB standard was developed in the context of the Eureka 147 project [15] of

the European Union. The key document describing this standard is published by

the European Telecommunications Standards Institute (ETSI) [39] which details the

composition of the digital data streams used in DAB and the physical requirements

of a Radio Frequency (RF) DAB signal. Several other standards are in place for use

by DAB broadcasters, in order that they might build up a complete transmission net-

work where transmitters, audio sources, and intermediate multiplexers are physically

separate.

2Uniform Resource Locator

– 4 –

1.4 The suitability of DAB Networks for carrying Data Services Introduction

The DAB standard provides great flexibility in the use of network bandwidth, includ-

ing the ability to dynamically create data channels, taken from a fixed total broadcast

bandwidth, for short lengths of time. This feature allows the implementation of data

services, which can be made to pop up when required. Other features such as the

ability to encode both audio services and data services at the same time make DAB

technology lend itself well to creating a broadcast data network in addition to the

audio network it was primarily designed to transport.

Several additional standards have been specified along with the core DAB standard

document. Of greatest use to the development of DABWeb is the Multimedia Object

Transport [34] protocol standard. The MOT allows for binary files along with associ-

ated parameters to be transmitted over DAB. The MOT standard does not provide

any way for complete hierarchical directory trees of files to be transmitted. However

it is an expandable standard, allowing this DABWeb specific aspect to be introduced.

The goal of my thesis has been to build upon the existing standards and create a new

flexible standard allowing Internet content to be broadcast. The reference implemen-

tation of the new standard presented here helps show the viability of a commercial

DABWeb service. The reference implementation also provides a technology demon-

stration showing the usefulness of future research which uses DAB as a medium for

mobile data services. The next five chapters cover the following topics :

• The Related Work chapter summarises work by others which is closely related

to DABWeb.

• Component Technologies is concerned with describing my overall design of the

DABWeb system, and then reviewing each of the third party component tech-

nologies that form part of this system.

• DABWeb Design then details the functionality that should be achieved by a fully

working DABWeb system, and then details my designs for both DABWeb client

and server software systems.

– 5 –

1.4 The suitability of DAB Networks for carrying Data Services Introduction

• The Implementation chapter follows client and server designs through to a work-

ing DABWeb system, and ends with a summary of the current state of the

DABWeb reference implementation.

• Finally the concluding chapter describes possible further research work on the

existing DABWeb system, and uses for the software in its current state.

All the design and implementation work leading to the finished DABWeb prototype

was done by myself between March 1999 and January 2000. Diagrams contained

within this thesis are my own work, except where indicated otherwise. The project

brief for DABWeb was provided by IBM Research. This brief included the specific

choice of encryption algorithm and smart card systems to be used but only the general

project description - to make use of DAB equipment for metered WWW content

broadcast. IBM also specified that as much of the software as possible should be

developed in Java.

– 6 –

Chapter 2

Related Work

2.1 Introduction

The concept of the bandwidth asymmetric DABWeb Internet content distribution sys-

tem is certainly not new. Related systems may be found in use by theoretical studies

attempting to optimize bandwidth allocation within a broadcast data channel, and

also in the form of both research and commercial technologies used to disseminate

data to a variety of clients including televisions, computer workstations, and mobile

phones. Most of the technologies described in this chapter are asymmetric to some

extent. In some cases asymmetry is a necessity because of the type of wireless broad-

cast technology being used, and in others the asymmetry results from attempts to

make better use of the bandwidth available in existing network infrastructure.

2.2 The Boston Community Information System

Gifford et al [11] provide an early introduction to the use of dissemination to deliver

data. An early application of this approach can be seen in the Boston Community

Information System (BCIS) from MIT [11, 10] which was used to deliver information

bulletins to client workstations equipped with radio receivers. BCIS was put on

– 7 –

2.3 The Datacycle Project Related Work

trial in the metropolitan Boston area for two years with about 200 clients starting

in late 1982. The BCIS system made provision for both broadcast and two way

interactive communication, and from the trial it was concluded that users valued

both the broadcast and interactive styles of data delivery - showing the usefulness of

broadcast technology for data dissemination. In the case of DABWeb web surfing of

cached pages from broadcast carousels could be seamlessly integrated with the surfing

of pages that must be requested from a server. Users could browse their cached

DABWeb pages, which could optionally hyper-link to web pages not broadcast in

DABWeb carousels. The user’s web browser would then have to make use of a more

expensive two way network connection to fetch the uncached pages. This would

allow DABWeb users the same complementary mix of broadcast and interactive data

delivery that was appreciated by users of the BCIS system.

2.3 The Datacycle Project

Broadcast push based technology has also been used to build database systems. The

Datacycle project at Bellcore [17, 55] made use of high bandwidth optical fibre data

channels to quickly disseminate a database to many clients which would then make

use of a combination of hardware and software technology to perform searches and

queries on the data stream. Datacycle provided all the usual functionality expected

from a DBMS1 and was able to provide concurrency control between changes made

by multiple clients and provide consistency guarantees relating to data cached by

each client. Client to server communication was provided by an upstream network

backchannel.
1Data Base Management System

– 8 –

2.4 Broadcast Disks Related Work

2.4 Broadcast Disks

Research at Brown University [46] describes the use of broadcast disk technology over

asymmetric networks by information centred applications. A fully working prototype

system is described, which makes the assumption of a broadcast downlink being

present. The broadcast disk concept is similar to that of a DABWeb carousel, but is

far more flexible having been developed with a wider variety of data dissemination

applications in mind. The DABWeb carousel container format has been optimised

specifically for web content and to a large extent be a backwards compatible evolution

of the MOT protocol. Broadcast disks may be used to form a non-flat [25] scheduling

model where different pages of content are broadcast at different rates per repetition

cycle.

2.5 The problem of scheduling

Recently there has been a large research effort into the problem of generating broad-

cast data streams scheduled to achieve the best client performance where clients have

little or no cache memory available. Jain and Werth [44] show this problem to be

NP complete, even in simple cases where each client may only be interested in a

small fraction of the whole data stream. Work has been done by Ammer and Wong

[30, 31] to put the problem of content scheduling in the same context as bandwidth

allocation problems. They describe a system of heuristic rules a broadcast scheduler

may follow when choosing the ordering of information pages being broadcast. Sev-

eral other researchers have also proposed heuristic solutions to broadcast scheduling

[36, 6, 56, 47].

– 9 –

2.6 The Teletext System Related Work

2.6 The Teletext System

The teletext system provides a traditional model for distribution of multimedia data

over a broadcast channel. Both teletext and the closely related videotext system -

which made use of a two way communication channel - have been in widespread use

within Europe and Asia since the mid-80’s. Theoretical results on client caching and

broadcast scheduler design using these systems are described in a paper by Wong [22].

Several other studies have been performed in relation to teletext content scheduling

and the latencies that users are willing tolerate. Ammar and Wong [30] have derived a

formula to help ensure that content scheduled for broadcast will make optimal use of

the broadcast bandwidth available in the absence of a client side cache. Their formula

for optimum client side performance states that in teletext systems with no client side

cache the bandwidth for each page broadcast should be proportional to the square

root of the access frequency of that page. As the DABWeb system relies heavily on

a client side caching scheme whereas teletext does not, a direct comparisons between

DABWeb and the teletext system is not possible. However Wong and Ammer’s

formula may still be of use in the context of DABWeb to ensure maximum client

side cache availability of a web page instead of access latency as with the cacheless

teletext system. The use of a cache by the teletext system is studied in a paper by

Ammar [29] describing the performance of a very simplistic caching system.

2.7 An MHEG Carousel Scheduling Simulator

The recent widespread introduction of digital television systems has also brought with

it a new and improved teletext system, which features a user interface very similar

to the world wide web. Fuhrhop et al [5] look at the use of the new style teletext

system in transporting multimedia information pages in MHEG2 format - a standard

similar to HTML3. They describe optimisations of content for different geographical

2Multimedia and Hypermedia Expert Group
3Hyper Text Markup Language

– 10 –

2.8 WebTV Related Work

regions to ensure that users have the minimum wait time when accessing a new page.

A scheduling algorithm for specific weather report example content is presented from

which access time statistics have been compiled. Their system does not make as much

use of caching as DABWeb does, but the content dependent approach to scheduling

might be useful in designing new carousel scheduling algorithms for DABWeb.

2.8 WebTV

Another system bearing a resemblance to DABWeb is Microsoft’s WebTV [61] system

which allows web pages to be broadcast along with a conventional analog TV signal,

and received by a computer with appropriate TV tuner hardware. The WebTV sys-

tem allows for interactive web browsing when used in conjunction with a conventional

telephone line - the telephone line providing a back channel for web page requests.

WebTV served as an early example of the convergence between Internet based infor-

mation services and traditional broadcast based television channels, raising the ques-

tion of whether television would evolve to become simply another application package

on a computer desktop or whether the Internet would become absorbed by domestic

television as another channel. Since the initial launch the WebTV4 service has been

expanded to use a satellite broadcast channel making the telephone line upload and

satellite download combination highly asymmetric. This large extra download band-

width allows WebTV subscribers access to a much more interactive and personalised

television system where live TV programs may be paused, and rescheduled to each

user’s personal preference.

4The original WebTV product (1995) consisted of a set-top box with no local storage. Companies involved were
Sony and Philips (end-system integrators); Excite (WWW search engine), Surfwatch (WWW filter); Concentric (ISP);
IDT (electronics); Headspace (ambient music) and Progressive (audio/IP specialists). The company was bought by
Microsoft at some point, and is now a brand name for a wider range of services and products.

– 11 –

2.9 “Being Digital” Related Work

2.9 “Being Digital”

One important feature of digital media delivery technology is user profiling. Negro-

ponte [35] describes how the utopia of having content availability of ‘anything anytime

anywhere’ may be what users think they would like, but in fact pre-selection on the

part of the content provider is a much better scenario. Necroponte envisages a much

more ideal system having a detailed profile of each user and the ability to ensure

that the content most easily available to each user was especially relevant to them

and delivered in a timely fashion. In the context of DABWeb, broadcasts could be

made only to localised geographical areas along with local radio stations, and a client

side user preference system developed to cache only those parts of the broadcast data

stream of interest to that particular user.

2.10 IP Multicasting

Though most of today’s Internet traffic is carried via point to point network links,

there are protocols which allow multicast transmission of data packets. The experi-

mental Internet Multicast Backbone - Mbone [24] - has been developed to facilitate

the transmission of multimedia traffic on the Internet [49]. Multicast traffic is ef-

ficiently supported by co-operating routers which dynamically maintain a spanning

tree of point-to-point links in response to user-initiated joins and removes. The effect

is like that of a spectrum of broadcast channels from which a user can select.

Tools such as RAT [8] and VIC [50] are used for continuous media audio and video.

Applications also use the Mbone for non-continuous media distribution. WARP uses

multicast for efficient support of distributed atomicity in shared objects [3] and also

for resource discovery [4]. WebConf [19] uses multicast for broadcasting HTML.

A key difference between the Mbone and DAB is that the Mbone is multi-directional

- any member of a group can send as well as receive. However the Mbone offers no

support for a mobile wireless client, as it requires an Internet connection to work.

– 12 –

2.11 Reliability Related Work

The use of broadcast strategies for Internet content distribution has received much

attention of late since traditional point to point Internet links have failed to provide

adequate response latencies when coverage of election events or the Olympic Games

is requested by millions of users simultaneously. Imielinski and Badrinath [57] survey

data management problems in mobile computing, and argue the use of dissemination

technologies as an alternative to point to point links in order to make systems highly

scaleable.

2.11 Reliability

Broadcast technologies have also been used to allow reliable file transfer, with several

protocols having been developed to achieve this end. These include the Multicast

Dissemination Protocol [21] and the Adaptive File Distribution Protocol [43]. Both

of these file transfer systems are combined with a back channel in order to allow a form

of moderated ARQ 5. Another system, Fcast [20] makes use of erasure codes instead

of ARQ to allow reliable file transfer broadcasts. Erasure codes are a type of FEC6

scheme which has been specifically designed for one-to-many computer networking

protocols such as IP multicast. The basic idea is that k blocks of source data are

encoded into n (greater than k) blocks of transmitted data in such a way that any k

blocks of encoded data can be used to recover the original data. In this way a receiver

can recover from up to n - k losses of good blocks.

FEC schemes are not often employed in the Internet, as the current generation of

Internet protocols have evolved primarily for use within duplex networks where ARQ

was a natural choice for achieving reliability in point to point communication. FEC

systems are perceived as having significantly higher bandwidth overheads than ARQ

based schemes, and rely on complex algorithms for data encoding and decoding which

are costly to run in software. Traditionally the mainstay use of FECs has been in the

5Automatic Repeat reQuest (ARQ) protocols require positive acknowledgements (ACKs) and/or negative acknowl-
edgements (NACKs) from the receiver to ask for retransmission of lost or corrupt packets from the sender.

6Forward Error Correction

– 13 –

2.12 Multiple Unicast Related Work

telecommunications industry where high bandwidth data links make use of dedicated

hardware to implement specific FEC schemes.

The use of FECs as software components in IP protocols may become more widespread

in the future, with this goal having motivated some of the recent work on erasure codes

by Rizzo [26]. Use of erasure codes in conjunction with multicast systems such as the

Mbone could form part of a congestion avoidance strategy [27] where servers would

be less likely to be swamped by repeat requests if corrupt data packets were received

by large numbers of clients at the same time. Using an FEC scheme most of the

clients would be able to repair the damaged packets themselves without having to

request retransmission.

At present DABWeb does not make use of an FEC scheme, instead only making use

of repeat transmission scheduling for reliable delivery, and enhances data availability

to the user by downloading whenever possible and holding the results in a large cache.

The inclusion of an FEC scheme could be of use to DABWeb in the future, in allowing

greater reliability of the system in areas where radio reception was particularly bad,

and the likelihood of clients receiving several carousel repeat transmissions containing

the same damaged blocks is high.

2.12 Multiple Unicast

Several commercial systems make use of pseudo broadcast such as the Pointcast [42]

system. Pointcast claims to make use of push based technology in order to distribute

information bulletins, but in fact the client side of the system makes use of a two

way network link to periodically poll a server for new information bulletins. The

subscribing Pointcast user base can profile themselves to a central server, which will

then be able to pseudo broadcast the information bulletins to specific groups who

would find them of interest. Other similar systems include Marimba [32] and BackWeb

[1]. As multicast Internet technology becomes more widely available Pointcast and

similar systems could be made to operate in a truly multicast fashion.

– 14 –

2.13 Other DAB based data service systems Related Work

2.13 Other DAB based data service systems

Studies have been made of the possible usage of DAB broadcast networks to support

interactive Internet surfing using a different form of wireless technology as a back

channel. The MEMO project [33] contemplates using DAB technology in this way

where GSM provides a low bandwidth uplink channel which is combined with a

high speed DAB download channel. This system then transports web content via the

HTTP protocol. Another study by Ljungquist [23] looks at the possible use of Digital

TV broadcasts as a downlink data channel, and GSM as an uplink channel in the

same way as MEMO. Both MEMO and Ljungquist aim towards using a broadcast

channel for distribution of user requested data, whereas DABWeb does not support

user requests in its current form.

Rhode and Schwarz [45] currently markets a multimedia data server system, similar in

concept to the DABWeb system. Their multimedia server is intended to be used with

content tailored for broadcast (as with teletext) using the MOT. DABWeb technol-

ogy sets itself apart from the multimedia server by the smart card based encryption

system, and because it can broadcast standard web content with no special tailoring.

2.14 Alternative wireless technologies

Within the commercial world there is widespread interest in wireless devices which

allow consumers access to the Internet at a low price point. However much of this

work is only visible in the form of public technology demonstrations attributable to

specific commercial institutions, and so are not easily referenced. Currently a large

development effort is being made by several companies to allow users of GSM mobile

phones to access a subset of the Internet. This is to be achieved using WAP (Wireless

Application Protocol) enabled mobile phones which have recently been placed on sale

throughout Europe. WAP phones rely on a two way wireless connection to provide

for fully interactive surfing.

– 15 –

2.14 Alternative wireless technologies Related Work

The mobility group at Rutgers [57, 58, 59] has studied the problem of conserving

battery power on mobile wireless client machines. Its system focused on minimising

the amount of listening time each mobile receiver client made to the broadcast data

stream. Its work in this area [58, 59] shows the use of indexing strategies to determine

a period of time in which the client need not listen to the broadcast, and so conserve

battery resources. By this strategy clients use the indexes to determine the time

distance until the next broadcast is made of a page of interest. A similar mechanism

is supported for by the MOT protocol, and if time distance indexes were placed in a

DABWeb data stream DABWeb clients could be made to behave in this way.

– 16 –

Chapter 3

Component Technologies

This chapter describes the hardware and software technologies used to build the

DABWeb reference implementation. In some cases specific hardware and software

solutions have been chosen for reasons of availability, for example smart card systems

and the WebFS filesystem, both of which have been developed within IBM.

3.1 A DAB Transmission Network

The DAB Network depicted in figure 3.1 consists of two service providers who may

generate audio, data or both types of content, multiple transmitter sites, and all

intermediate DAB network hardware. Several services are multiplexed together before

transmission at Radio Frequency (RF) as a single broadcast ensemble. Since the same

RF can be used for an ensemble at each transmitter site, mobile receivers do not

have to be re-tuned when they move between areas covered by different transmitters

- as they must be with conventional analogue radio stations. This is because all

transmitter sites in a DAB network are synchronized.

Central to the entire network is the multiplexer unit, which takes encoded services

as input from each of the service providers and multiplexes them together to create

an ensemble data stream. An ensemble is then output to each transmitter site for

– 17 –

3.1 A DAB Transmission Network Component Technologies

Au
di

o

D
at

a
Pulse

Pulse

Pulse

ETI

from one or more services.

Audio only

combines data channels.

combines data channels.

ETI

ETISTI

STI

Service B

Service A

GPS Clock

GPS Clock

GPS Clock
Ensemble Multiplexer

Generates an ensemble

Source Encoder
Digitally encodes audio and

Digitally encodes audio and
Source Encoder

DAB Transmitter

Mast & Control Unit.
DAB Transmitter

DAB Transmitter
Mast & control unit.Mast & control unit.

Figure 3.1: Illustration of a typical DAB Network

broadcast. Neither transmitter units nor encoder units need physically be located

near the multiplexer. Instead they communicate using two well defined interfaces

over satellite, or land based channels. The Service Transport Interface (STI) [53] is

designed to handle all communication between a service provider’s encoder unit and

the ensemble multiplexer, and the Ensemble Transport Interface (ETI) [14] carries

an ensemble data stream between the multiplexer and a transmitter control unit.

Because the commercial model for providing DAB broadcast services relies on the

content providers and broadcasters being separate entities (a broadcast ensemble

can carry up to 64 separate subchannels of content) each content provider will own an

encoder unit, which is connected over a dedicated third party link to the transmission

provider’s multiplexer. This is the main reason for the STI and ETI being well defined,

allowing each radio station to feed encoded service data to a transmission provider’s

network, making use of any vendor’s encoder hardware that uses the STI protocol.

Similarly any transmission unit may be used as long as it can receive an ensemble

transported using the ETI.

The DAB standard allows a data channel to be encoded to fill an entire subchanel

– 18 –

3.2 The DEAPspace project’s DAB testbed Component Technologies

(replacing the audio) or be combined with the digitized audio data in a subchannel.

Data streams which are combined with audio in a single subchannel are known as

Program Associated Data (PAD). To further complicate the terminology, it should

be noted that each subchannel output from an encoder is only an encoded service at

that stage. Services are not associated with a name and subchannel number until

they reach the multiplexer unit. Up to 64 encoded services are each given subchannel

numbers by the multiplexer. The subchannels are then multiplexed together to create

an ensemble. Subchannels within the ensemble may also be given textual service

names individually or in groups.

A complete ensemble data stream is then output from the multiplexer to each trans-

mitter unit. A transmitter unit modulates the 1.87Mbps ensemble to an allocated

collection of radio frequencies spread across approximately 1.5Mhz using Orthogonal

Frequency Division Multiplexing (OFDM). Finally the output RF signal is fed to the

transmitter mast for broadcast.

Transmitters based in different locations (three are illustrated in the diagram) are kept

synchronized using a highly accurate timing pulse from the GPS1 satellite network.

Broadcast synchronization is necessary for areas of coverage where transmissions over-

lap from two transmitter sites.

3.2 The DEAPspace project’s DAB testbed

The DEAPspace project’s DAB transmission system (see fig. 3.2) consists of four

functional units, a PC computer used to configure the system, and a small antenna

mast. All of the units are rack mounted, the only sensible way to contain the many

interconnecting cables needed. The first two units are source encoders, then a multi-

plexer unit, and finally a transmission control unit which generates an output signal

at RF. Currently RF signals from the transmitter unit are not fed into a secondary

1Global Positioning System

– 19 –

3.2 The DEAPspace project’s DAB testbed Component Technologies

Figure 3.2: The DEAPspace project’s DAB transmitter

amplifier, so the range of the transmitter is limited. In the laboratory, the transmis-

sion unit has been fitted with a GPS receiver which provides it with a regular clock

pulse.

The two source encoder units allow analogue audio sources and digital data inputs

to be fed into the transmitter system. One of these encoders functions as a master

unit, and the other as a slave. Both contain two separate stereo audio/data encoder

circuits each of which executes a software based codec. The codecs are configurable

using an external PC which downloads new configurations (or even new codecs) to the

encoder via an RS232 data link. Configuration parameters are available for the type

of audio compression used, various acoustic options such as gain and equalization on

the audio inputs, and the required output bandwidth of the encoded audio data.

Combined, the two units allow up to four subchannels to be encoded, each containing

audio, data, or both audio and a PAD service. PAD data is combined with audio

data by the codec, as input into an encoder unit using an RS232 data link. The

– 20 –

3.3 Overview of the DABWeb System Component Technologies

exact number of PAD data bytes per frame of audio data in a subchannel is codec

configurable.

The mapping of services to subchannels depends on the current configuration of the

multiplexer. New configurations may be downloaded from an external PC, again over

an RS232 data link. The application allows services to be mapped into an ensemble

time slice, each service being allocated some of the total 1.87Mbps bandwidth of the

ensemble.

The DEAPspace project also has access to three different types of DAB receiver de-

vice, and one PCMCIA card Digital Signal Processor (DSP) device, used to decode

Radio Data Interface (RDI) [16] output from a receiver. An RDI output stream

contains an entire ensemble, from which components may be extracted (e.g. a sub-

channel) using the DSP card. One receiver supplied by Philips outputs PAD data

directly via RS232.

3.3 Overview of the DABWeb System

Figure 3.3 illustrates the components necessary for a complete DABWeb system, in

which web content is harvested from the Internet and broadcast to multiple clients,

which then cache the content so that it can be browsed later. The latest version

of each web site is retrieved from the Internet by the web harvester module. The

harvester caches each downloaded web site, until scheduled for broadcast.

Before broadcast, web sites must be encoded into carousels and (optionally) en-

crypted. With encryption a secure channel is needed to distribute secret keys between

the server, and each client. Encoded carousels are usually scheduled for broadcast

more than once, in the hope that they may be received completely by many clients.

Each client decodes, decrypts and caches carousels for later retrieval by the local web

browser.

– 21 –

3.4 The MOT Protocol Stack Component Technologies

Internet ready for broadcast.

for browsing at any time.

Encodes multimedia content
MOT Encoder

streams before broadcast.

DAB Receiver

Web Browser

secure, ensuring only authorised parties may decrypt.

In this case a secure channel must be used to distribute keys to
each of the authorised parties who wish to decrypt the data.

Data transferred within the box above can be made cryptographically

Encryption Engine

Decryption Engine

DAB Network
Transmitter

Optionally encrypts content.

MOT Decoder

stream of multimedia data.
Decodes an incoming

Receiver

D
A

B
radio

broadcastClient
Server

Secure transfer
of secret keys

SecretKeys

Web Harvester
Downloads content from the Scheduler

Decrypts incoming content.

Repetition
information

Client Webcache
Stores received web content

Schedule

Figure 3.3: The components required for a DABWeb system

3.4 The MOT Protocol Stack

The Multimedia Object Transport (MOT) Protocol Stack [34] has been developed

by ETSI to provide a standard for the broadcast of multimedia data streams as

components of a DAB ensemble. It is being used in some commercial data service

trials at present [63] and has been developed by a subgroup of the engineers responsible

for the original DAB standard [39]. The MOT standard integrates seamlessly with the

core DAB broadcast standard, and is extendible for use with web based multimedia

content. Because of this it has been chosen as the method of encoding a broadcast

DABWeb data stream.

The protocol stack makes provision for repeats in the data stream, so that broadcast

content can be scheduled in carousels of data, each carousel being broadcast several

times to ensure that receivers have the maximum chance of receiving that carousel.

Also catered for by MOT is fragmentation of the data stream into units optimized for

– 22 –

3.4 The MOT Protocol Stack Component Technologies

receiver side caching. This is necessary so that receivers can hold incomplete snippets

of a carousel in a cache until the missing parts of the carousel are broadcast again,

and so the carousel can be completed. Repetition overcomes the problem of DAB

not providing a reliable physical layer when continuous reception is not possible. If

repeats are scheduled carefully, the probability of individual clients receiving more

complete carousels increases.

Issues that must be dealt with in caching parts of a data stream are the ability to

distinguish between fragments of an incomplete web site (so they may be cached and

later retrieved), and time indications for the next repeat. When a cache manager

knows how much time will pass between repeats, policies can be implemented to

make efficient use of cache space.

The MOT protocol stack allows for the addition of parameters for time delays and

names, and also allows new application specific parameter encodings to be added to

a data stream. In the case of an encrypted data stream, extra parameters could be

defined to specify encryption type and hold a session key if needed.

The MOT standard also specifies that parts of the data stream may be tagged with

application specific parameters. This provides a flexible mechanism whereby tree

structured web site data may be mapped onto a serial MOT data stream for broadcast.

With an appropriate mapping scheme, web site files broadcast as parts of an MOT

stream can be linked using special parameters, so that a receiving client can then

map the files back into a tree structure in a local file cache.

3.4.1 The MOT Session layer

MOT Objects (see fig. 3.4) form the top session layer of the MOT protocol stack.

Each object contains a data area and zero or more associated parameters. The MOT

allows objects to be grouped together with a single numeric identifier if they are

related for application purposes. Objects are identified within these groups by their

transport identifier, which must be unique within the group.

– 23 –

3.4 The MOT Protocol Stack Component Technologies

M O T O b j e c t

MSC Data Group

XPAD Data Group

XPAD Frames/Packets

Transmitter Data Protocol

jM O T O b e c t

MSC Data Group

XPAD Data Group

XPAD Fames/Packets

Receiver Data Protocol

DAB Transmission

(Only in PAD mode)

Figure 3.4: The MOT Protocol Stack (as used for both PAD and Packet modes)

Directly below the session layer comes the data group transport layer. Each MOT

object is split into two or more Main Service Channel (MSC) data groups. Each MSC

group bears the object’s transport identifier along with a segment number counting

up from zero (the first data group of the object). Data groups are optionally check-

summed with a CRC, and contain a four bit continuity index allowing a receiver to

check whether it missed any data groups in a transmitted sequence.

3.4.2 Transmission and re-assembly of MOT Objects from data groups

Each MSC data group is a uniquely identifiable sub-unit of a specific MOT object.

When errors occur during reception of an object, that object can be kept in an

incomplete form by the receiver until it is repeated again, and all data groups of the

object are successfully received. Each data group contains a counter in its segment

header indicating how many times it will be repeated in the future. In addition each

object optionally contains a parameter to specify how many seconds in the future it

will be repeated, so if some parts of the object are successfully downloaded a receiver

will know how long it should wait for a repeat of the remaining parts.

Uniquely identifiable data groups also allow several objects to be transferred concur-

– 24 –

3.4 The MOT Protocol Stack Component Technologies

rently by multiplexing their data groups together in time. This is described in more

detail in Chapter 4 along with other details of the DABWeb receiver client design.

Concurrent file transfer may have useful implications for scheduling policies.

3.4.3 Ensemble bandwidth allocation for MOT data streams

In general two modes of transport are possible for MOT data streams :

1. Packet Mode where the MOT data stream occupies an entire DAB subchannel

2. PAD Mode where the MOT data stream shares a subchanel with audio data

With PAD mode transport only 54 data bytes may be inserted per audio frame,

at the rate of one frame per 24 milliseconds. This provides a total bandwidth of

approximately 2.19Kb/s with the available DAB testbed.

When Packet Mode transport is used, the bandwidth of the subchannel in question is

dynamically configurable from the total 1.87Mb/s, by the multiplexer responsible for

generating the ensemble. It is even possible to dynamically create pop up subchannels

after reducing the bandwidth allocation of existing subchannels.

For example during news audio broadcasts where the audio quality required is lower,

the bandwidth used by the news audio subchannel could be halved, and a new sub-

channel created to absorb the freed ensemble bandwidth. This new subchannel could

carry an MOT data stream while it existed, and then disappear when the news fin-

ished.

3.4.4 The MOT in Packet Mode

A transmission frame from a complete DAB ensemble contains three specific compo-

nents :

1. Synchronization Channel

– 25 –

3.4 The MOT Protocol Stack Component Technologies

2. Fast Information Channel (FIC)

3. Main Service Channel (MSC)

Depending on the transmission mode chosen (there are several defined) one or more

of each part may comprise a complete transmission frame. Audio / Data information

is always contained within the MSC part of a transmission frame with the other

parts being used internally by the DAB system. Each MSC group from an ensemble

transmission frame corresponds to one DAB subchannel. The format of the MSC part

is exactly the same as that used by the MOT system to encode data groups (segments

of an MOT object). For this reason transmission of MOT objects in packet mode

(occupying a complete subchannel) should be easy in theory, as the same encoded

MSC data groups can be placed directly into a subchannel with no further encoding.

Within an ensemble transmission frame the MSC groups are further subdivided into

packets, which can be reassembled by their sharing of a DAB network packet address.

3.4.5 The MOT in PAD mode

When MSC data groups are transported in PAD mode, as part of an audio subchannel,

each data group must first be split into one or more XPAD frames. These frames

are then combined with the audio data by a DAB source encoder unit. Each XPAD

frame has a content type and frame length indicator. Many different content types

are defined, as a PAD data stream is not designed exclusively for use by the MOT

(only types 12-15 and 0 contain MOT data).

The first XPAD frame part of an MSC group must be a typed group length indicator

giving the complete length of the MSC data group to follow. Immediately after the

group length frame - and no other frame type can interrupt - is an MOT group start

XPAD frame. After the start frame, the remainder of frames making up the MSC

group are transferred as MOT continuation typed XPAD frames.

Since each XPAD frame is typed, it is possible to include other types of content

– 26 –

3.5 WebFS (IBM Zurich Laboratory) Component Technologies

between MOT data, as long as the length indicator frame is immediately followed by

a group start frame.

Each frame can be individually checksummed using CRC16 so corrupt frames will

be detected. However the only way to detect whether one or more complete frames

have been missed is via feedback from the DAB receiver unit. Should several frames

go missing, including the length and start frames of the next group, an MOT stream

decoder would still notice when the checksum of the received MSC Data Group was

incorrect.

3.5 WebFS (IBM Zurich Laboratory)

The WebFS file system has been developed within the DEAPspace project by Patrick

Zwahlen [38]. It is used by DABWeb to harvest web sites from the Internet and

provide server side caching of web sites before they are encoded into carousels for

broadcast.

The WebFS system allows a non-volatile cache of data scheduled for transmission to

be held with the minimum of active cache management by a DABWeb server. Some

knowledge of how WebFS downloads web sites from the Internet is required by the

main DABWeb server though, to ensure that web sites are cached in their entirety

by WebFS. Other than this WebFS provides an excellent solution to the problem of

keeping a DABWeb server continually running when remote Internet sites become

inaccessible due to Internet network problems. In addition the caching of entire web

sites on a local disk allows the DABWeb server to start up quickly in the case of

software failure, as there is no need for time consuming data downloading from the

Internet on restart.

Prompting WebFS to begin downloading new web content into its cache can be man-

aged by a low priority server thread. The WebFS process itself could even run on a

separate machine in a local network with a shared filesystem. This would reduce the

processing load on the main DABWeb server machine(s).

– 27 –

3.5 WebFS (IBM Zurich Laboratory) Component Technologies

3.5.1 WebFS Functionality

The WebFS system creates its own virtual web Network File System (NFS), allowing

the web to be mounted just like any other NFS file system under UNIX, for example:

cd /webfs/www.st-andrews.ac.uk/

After this command has been executed WebFS would then allow the user to move

around the directory structure of the web site www.st-andrews.ac.uk as if it was

held on a local disk. Files may be loaded and copied to a different local filesystem,

but as WebFS is read only they cannot be altered.

There are some technical considerations with WebFS, stemming from the fact that

a hierarchical file system is only able to represent a subset of the web. Many web

sites on the Internet are not presented in tree form, notably those dependent on CGI

scripts to generate content. At present WebFS simply ignores these. In relation

to DABWeb this should matter very little, as those web sites that may be encoded

into a tree based data structure are also particularly suitable for easy broadcast, and

caching in a DABWeb client’s local hierarchical filesystem.

One consideration when downloading web trees using WebFS is that on mounting

a particular web site, WebFS is only able to find the contents of a directory by

intelligently parsing the HTML files it knows about, starting from files in standardized

places, for example index.html is usually the entry point in the root directory of

a web site. Because it is not possible to estimate how long this will take for a

whole web site, WebFS performs a depth limited search of the complete web tree.

This approach allows WebFS to access the Internet in real-time with further parsing

being performed on the fly as new directories are accessed. As soon as WebFS has

discovered the location of a file in a remote web site, it will download that file and

cache it locally. If WebFS was to try and discover an entire web site directory tree

structure and download all of that site’s files in one operation - as a traditional web

site downloading robot would - the WebFS user could experience a long delay when

– 28 –

3.5 WebFS (IBM Zurich Laboratory) Component Technologies

initially changing directory to a web site using WebFS. The use of a depth limited

search allows WebFS to be used interactively as a command line tool, and as such

allows standard UNIX file search tools to be executed on a web site.

A side effect of the depth limited search approach is that some directories and files in

a web site tree may not become visible until all files in the site have been parsed. All

parts of a site that have been visited are cached locally by WebFS (on the machine

hosting the WebFS NFS server) and only when every HTML file has been found and

parsed can a WebFS client be sure that it is looking at the most complete web site

tree available. Even when all HTML files have been parsed, only files that are linked

together in the web site will become part of the tree. Files that have no link to any

part of the web site, but are available on the remote web server will remain hidden.

Figure 3.5: Viewing www.st-andrews.ac.uk with WebFS

Figure 3.5 shows WebFS running on the DEAPspace project Linux server capri. The

user is accessing WebFS from a terminal window, and the first time the contents of

the web site are viewed only nine directory entries are visible. After viewing one of

the sub directories and then the root directory again, more files have become visible.

Here the parser managed to find more root directory links when it parsed HTML

objects in the sub directory. Taking such limitations into consideration WebFS still

– 29 –

3.6 Security Considerations for DABWeb Component Technologies

provides an excellent method of collating web content for DABWeb broadcast, with

the WebFS server fully handling the task of collating web sites into web trees suitable

for transmission.

3.6 Security Considerations for DABWeb

The BEAST RK [48] encryption protocol is used to encrypt DABWeb content, with

each user requiring a smart card in order to decrypt BEAST encrypted content. The

three main components of this encryption system are as follows :

1. The host computer based encryption and decryption software with secret key

management functions.

2. The JavaCard smart card system, and on-card applet software. Smart card

applets are not the same as web page applets, being designed specifically for

smart card devices.

3. OpenCard [62], the smart card - host communications layer which provides a

high level interface for software running on a host computer to communicate

with software running on a smart card.

The IBM JavaCard smart card system [52] contains a very efficient on-card imple-

mentation of a Java Virtual Machine (JVM) and a feature rich on-card Operation

System (OS). In particular the JavaCard OS contains many cryptographic functions,

including the SHA-1 secure hash function which is one of the core components in the

BEAST RK algorithm. Each JavaCard has the ability to hold several executable Java

applets, each of which can support one or more application specific functions. Several

different commercial implementations of JavaCard are available from IBM and other

vendors, with differing specifications. Today’s typical JavaCard contains between 8

and 32KB of EEPROM, 256bytes - 4KB of RAM, an 8 or 16 bit CPU and 32KB of

ROM memory which holds the JavaCard OS and the on-card JVM.

– 30 –

3.6 Security Considerations for DABWeb Component Technologies

3.6.1 Encryption of DABWeb content using BEAST RK

BEAST RK is a block cipher symmetric encryption algorithm which can be used

to encrypt arbitrary sized blocks of data. The cryptographic security of BEAST is

provable - as discussed in the next subsection - and it has been designed to allow the

decryption of multimedia data streams in real-time.

The BEAST RK algorithm specifies the use of three secret keys to encrypt multimedia

content blocks, along with a session key, randomly generated for each block. These

secret keys are shared with untrusted DABWeb clients who would like to able to

decrypt content. The session key is transported along with each MOT Object, with

the content of each encrypted object having a unique session key.

Since BEAST RK is symmetric, where the same secret keys must be used by both

parties, and DABWeb clients are untrusted, the secret keys must be provided on a

tamperproof smart card device. The smart card solves the key distribution problem

using its own on-board computing capabilities which allow cryptographic algorithms

to be executed. The smart card handles all computations directly associated with the

secret keys, never divulging the keys to the untrusted client. Keys are uploaded to

each client’s smart card by the DABWeb server, and then smart cards are sent, for

example by post, to each client.

3.6.2 The cryptographic security of the BEAST algorithm

Because BEAST RK uses a unique random session key to encrypt each block, the

untrusted client should be unable to perform any chosen ciphertext attack on the

smart card in order to discover the secret keys. Analyzing BEAST RK, Lucks [48]

holds that each block’s unique session key makes the BEAST RK algorithm provably

secure against such attacks when the attacker has many examples of both the cipher

text and the corresponding plain text. In his claim about the cryptographic security

of BEAST, Lucks makes the proviso that the building blocks used to make up BEAST

must be provably secure.

– 31 –

3.6 Security Considerations for DABWeb Component Technologies

In the case of DABWeb, chosen cipher text attacks can easily be performed on the

smart card applet software, giving the attacker an unlimited amount of cipher texts

to choose from.

3.6.3 The IBM JavaCard System

A computer host accesses the JavaCard by means of a smart card card terminal. Two

possible types of terminal are available, one which handles contactless communication

with a smart card by means of a short range RF link and powers the card by emitting

an electromagnetic wave. The second type must make electrical contact with gold

plated connectors on the surface of the card, and as such requires the smart card to be

inserted into a slot. Contact based smart card terminals are advantageous as they can

supply the card with more power and so increase the card’s computing capabilities.

A card terminal will inform the host that a smart card is present, so that card-

host communication can begin. When a smart card is first powered up by the card

terminal (smart cards contain no on-board power supply) it will send an Answer

To Reset (ATR) signal to the terminal, which informs the host what type of card

is present. After this, subsequent card-host communications follow a set of discrete

steps :

1. The host sends a command with optional parameters to the card.

2. The card receives the command completely, and then takes the appropriate ac-

tion.

3. Once the card has finished processing, a result is returned in its entirety. Results

may include one or more parameters, or be a simple boolean indication that the

requested on card function has succeeded or failed.

The three steps described above constitute a complete card-host communication ses-

sion. However data may be made persistent between communications to a card applet

– 32 –

3.6 Security Considerations for DABWeb Component Technologies

stored in the card EEPROM memory even when the card is powered down. By de-

fault all Java objects which are created as class member variables persist in this way,

as do those created on the JavaCard applet’s heap. Other objects which are created

on the applet’s stack are transient, and are lost between different host calls to applet

functions. In the event of a power down (the smart card is removed from the card

terminal before returning a result) the transient variables will also be lost, and the

card cannot continue its current execution path.

The IBM ZRL JavaCard system follows the standard ISO 7816 [37] host to smart

card communication protocol.

JavaCard

 Card Terminal

JavaCard OS
Passes APDUs to selected applet

Applet X

....

Send command APDU’s
and receive back responses

Decrypts content and
tracks credits

BEAST Applet

Selected applet

Figure 3.6: Overview of a JavaCard with two applets installed

All data exchanged between the host and card takes the form of Application Protocol

Data Units (APDUs). Each APDU is simply a byte array, with formats being specified

for both command and result APDU’s. The ISO specification also defines simple

APDU responses to indicate whether the last command was successfully executed by

the card. For more complex responses, the specification defines how different data

types should be arranged in the response APDU byte array.

The first communication between the host (running OpenCard) and a newly powered

up JavaCard is the ATR which the card transmits. When the host receives the ATR

byte array the lowest software layer of OpenCard is able to recognize the card type as

being JavaCard. Next OpenCard must select which JavaCard applet it would like to

communicate with (see figure 3.6). This is done using a JavaCard OS select APDU.

– 33 –

3.6 Security Considerations for DABWeb Component Technologies

Each applet on the card has a unique identifier number known as the Application

Identifier (AID). The AID is encoded in two parts, firstly a universally unique com-

pany identifier, assigned to the applet’s developer, and also a number which uniquely

identifies the applet, assigned by the developer. This allows any combination of ap-

plets that the card can accommodate to coexist.

A significant advantage of this type of multi applet card system is that a BEAST

applet can coexist with a user’s credit card applet, or along with other multimedia

and e-commerce applets. With such a system, users need only make use of one smart

card for all their e-commerce, DABWeb and other smart card needs, making swapping

smart cards a thing of the past.

3.6.4 Security of data held on a JavaCard

JavaCards are considered physically secure computing devices providing only software

access to card functions, and data held within the card. Assuming that the software

running on the card will not allow unauthorised access to card data (e.g. only allowing

data to be written to by off-card software, never read) keys can be securely held on

the JavaCard without fear of them becoming known to untrusted parties.

Another benefit of the JavaCard is that in order to download a new applet to the

card, or remove an existing applet from the card, a host must have a cryptographically

signed copy of the applet. Only applets signed using keys known to the JavaCard OS

can be downloaded or removed.

Since several applets can coexist on one JavaCard (though only one can be active

at a time) the integrity of the BEAST applet is ensured as only parties with the

ability to cryptographically sign the applet may alter it. However the main security

consideration is that once secret keys have been uploaded to the BEAST applet on the

card, there is no way to recover them. The JavaCard OS ensures that while several

Java applets exist on the card, none may access memory used by another applet. The

– 34 –

3.6 Security Considerations for DABWeb Component Technologies

key assumptions here are that both the BEAST applet and the JavaCard OS are bug

free.

Work is ongoing within IBM Zurich to mathematically prove the security of the JVM

running on the ZRL JavaCard [52].

3.6.5 Overview of OpenCard

The Open Card Framework (OCF) [62] is designed to provide a high level service

oriented software interface so that applications wishing to communicate with a smart

card need not know about the low level APDU’s (or other communication proto-

cols) involved. OpenCard handles all card-host communication and specially written

OpenCard card services must be written for each specific on-card application. Card

services are modular in that each is a Java object, and can be instantiated and re-

moved dynamically by OpenCard when an OpenCard client application needs them.

OpenCard has been chosen for this purpose partly because of the development ex-

perience with the OCF that the Zurich laboratory has (much of the OCF has been

designed here), and because in contrast with other similar systems it is a true modular

and open multiplatform standard. A competing standard PS/SC [40] is tied to the

Win32 family of operating systems, and is not written in Java. OpenCard was the

better choice, as in addition to directly supporting most of the smart card terminals

that PC/SC does, OpenCard is also able to make use of PC/SC itself to support yet

more terminal device types.

3.6.6 OpenCard Card Services

For each card service there must also be a corresponding card service factory. The

factory module recognizes the type of smart card inserted into a terminal (typically

by the card’s ATR), and only allows its CardService to be instantiated if the correct

type of smart card is present. The card service handles all the required card-host

– 35 –

3.6 Security Considerations for DABWeb Component Technologies

communication sessions needed for a particular smart card function. Since card ser-

vices are implemented as Java methods, the results computed by the card can be

decoded from response APDU’s into standard Java data types such as integers and

strings.

– 36 –

Chapter 4

DABWeb Design

4.1 Design Goals

The reference implementation of DABWeb is designed to make maximum use of

existing standards and portable software technologies. Since the implementation of

DAB data services requires the use of a large amount of specialized hardware both

for transmission and reception it is important that a reference implementation should

be dependent on specific devices as little as possible.

In all cases the goal has been to create software interfaces which map the functionality

detailed in standards documents - for example MOT and DAB - onto the subset of

functionality offered by specific devices. That way new devices designed around the

same standards should be easily accommodated by the current software. Since parts

of the DABWeb system may be reused separately in future, such as the encryption

system, a generic interface design will also help to separate reusable components. The

following broad design goals were considered for the DABWeb client and server.

Design issues specific to the client side were :

• The ability to cache partially downloaded carousels so that when the same

carousel is repeated later, downloading can continue from as near to the in-

terupted point as possible.

– 37 –

4.1 Design Goals DABWeb Design

• Management of client-side caching to allow encrypted data to be cached and

recognized as such for later decryption. Every cached file should have an expiry

date and other associated parameters so that the cache can be weeded.

• Generation of a DABWeb home page by the client which allows a DABWeb user

to immediately access any web pages currently held in the cache. This home

page should be updated ‘on the fly’ so that users of the DABWeb system will

continuously have the most up to date web resources held in the cache available

to them.

• Design of a software interface that allows the MOT to be used in combination

with several different types of DAB device transparently (virtual DAB data

channel). This software interface should be used by both the DABWeb client

and server.

Issues considered as part of the design of the server were :

• The ability to split content into small parts. This allows receivers to quickly

resynchronize to a lost transmission signal, and continue caching the current

carousel.

• Internet downloading capability of certain standard Internet content types, which

are to be cached locally until ready for transmission. Content types such as Java

applets, graphic and HTML files pose no problems, however script files that form

part of some web pages are not suitable for DABWeb broadcast, as they require

two way communication with a remote server in order to function. All types

of content supported by WebFS are suitable for broadcast however, allowing

WebFS to act as a content filter.

• Ability to be able to encrypt data at the server side in real time, and allow the

same data to be decrypted in real time by receiving DABWeb clients.

– 38 –

4.1 Design Goals DABWeb Design

XPAD frames.
Queue of

MSC Data Group
MOT Objects are split into
two or more MSC groups.

XPAD Frame
MSC groups are then split
into many XPAD frames.

Requests
for frames

WebFS
Local file system which

caches www pages.

Frames being
sent to DAB

Website Scanner
Reads a complete web
tree from a filesystem &
streams MOT objects.

Uses BEAST to
encrypt content.

Encryption
Engine

System.currentTimeMillis()

objects into data groups.

MOT Object
Used to create, and split

Main thread. Sends
frames to the transmitter.

DAB Transmitter

D
AB Transm

itter

Server

Scheduler
Knows when to
encode which
web content.

Ancillary thread.
Initiates a frame

request.
send for every

synchronize server events.
Millisecond clock used to

Figure 4.1: Architectural overview of a DABWeb server system

– 39 –

4.1 Design Goals DABWeb Design

4.1.1 Overview of the Server system

The DABWeb server system is designed to harvest content from the Internet using

WebFS, map individual recovered web sites into carousels (each carousel being a group

of MOT objects) and then transmit each carousel according to a schedule. Figure 4.1

shows all the functional units involved in this process, starting with web sites cached

by WebFS being mapped into carousels by the web site scanner module (where they

can optionally be encrypted also).

Carousels are cached in main memory by the server, until the scheduler requires that

they be broadcast. When this occurs, each MOT object is split into MSC data groups,

then further split in the case of PAD mode transmission into XPAD frames. This

stream of data is then sent to a transmitter, via an appropriate device driver software

layer. Between the device driver and the lower levels of the protocol stack lies a queue

which allows the server to reliably deliver one frame to the transmitter as quickly as

possible. Figure 4.1 illustrates this for the case of PAD transmission.

Laboratory experiments have shown that with certain receiver/transmitter device

combinations, data frames arriving a few milliseconds later than the transmitter ex-

pected will not be transmitted. A receiver device may then output a repeat copy

of the last frame received to a DABWeb client. This situation is avoided by most

receiver devices, which will not output a data frame when none was transmitted. For

those receivers that will output a data frame whether one was transmitted or not, a

sequence number system must be used to label consecutive frames.

At the lowest level, integration with WebFS is provided using standard file system

operations. To ensure that a web site is cached, the server must have previously have

retrieved the directory content of that web site from WebFS. The scheduler module is

responsible for this. Assuming that a web site is entirely cached, the web site scanner

module can then map the site into a carousel of MOT objects.

Since carousels of scanned web sites are held in memory, the same MOT objects

can be used each time a carousel is repeated. As information about the time period

– 40 –

4.1 Design Goals DABWeb Design

until the next carousel repeat is built into the data stream, cached carousels must be

altered before retransmission.

4.1.2 Overview of the Client system

The client architecture (see fig. 4.2) illustrates the processes required to receive and

decode an incoming DABWeb data stream. At the lowest level, a driver device for

a DAB receiver device manages the receiver (tuning functions etc.) and feeds the

frame decoder with a stream of incoming bytes. Individual frames are recovered (the

architecture illustrates PAD mode) and a stream of XPAD frames are then grouped

together into a stream of MSCDataGroup objects by the group decoder.

If there are errors, or missing parts at any stage up to the level of MSCDataGroup,

the client simply discards the current group of frames, and continues decoding the

next group. Once a complete MSCDataGroup is received it is cached in memory, and

will not be dealt with further until all the data groups needed to complete that MOT

object are cached. The MOT Decoder attempts to assemble several MOT objects

concurrently, allowing the parts of each object to be collected over several repeat

transmissions if needed.

The MOT decoder outputs a stream of complete MOT objects which can then be

decrypted, and sent on to the client’s persistent cache. The cache manager generates

a list of currently cached carousels as a HTML home page. This home page is updated

as new carousels are cached, giving DABWeb users a entry point into the subset of

the web they have cached.

A user profile system is also illustrated as part of the client architecture, allowing

users to specify which content they would like to decrypt, and cache. This would give

users the freedom to only pay for what they are likely to read.

The client’s persistent cache may also support functions such as weeding, which would

ensure out of date and read carousels are removed from the cache to make space for

– 41 –

4.1 Design Goals DABWeb Design

Group Decoder
Finds groups of XPAD
Frames from a stream.

MOT Decoder
Assembles MOT objects
from the stream of groups.

D
A

B
 R

eceiver

Decodes incoming frames
and creates frame objects.

Frame Decoder

MOT Object
Used to create, and extract both
object content and parameters.

Downloader

MSC Data Group
MSC Groups assembled
from many XPADframes.

Expires Download

Holds web pages, making
them available to browse.

Local WWW cache

Expires out of date objects.

objects not able
to be finished.

Holds one or many objects
only partially down loaded.

D/L Manager

Group

{
DAB Receiver

Sends configuration to the

Runs as ancillary thread.

Incoming
commands

Expire decision

Frame errors

errors

received. Main thread.

commands from receiver.

Receiver

R
ec

ei
ve

r
er

ro
rs

Decryption
Engine

Uses BEAST to
decrypt content.

Java Card
Accessed by
OpenCard and
performs initial
decryption and
decrements the
on card usage
counter.

User Profile

decrypt and cache.
Decides what to

Dec
isio

n t
o d

ec
ryp

t

XPAD Frame
XPAD frames are received
and queued for decoding.

receiver. Queues frames

Receives frames and other

The user's own WWW browser

Figure 4.2: Architectural overview of a DABWeb client system

– 42 –

4.2 Mapping a web tree structure onto a stream of MOT objects DABWeb Design

new carousels. Parameters encoded in each MOT object can be used to specify the

useful life of a carousel.

4.2 Mapping a web tree structure onto a stream of MOT

objects

Header Optional list of parameters

Body (content) partHeader part

Encoded MOT object

MOT data stream

Figure 4.3: Encoding the components that make up an MOT object

An MOT object consists of two data areas (fig 4.3), the first part contains header

information and parameters associated with that object, and the second the object’s

content. In terms of a web site, each content area can contain one or more of the

files comprising a web site. Any number of application specific parameters may be

included in the header part which can be a maximum of 8192 bytes long. A flexible

header parameter system allows each parameter to vary in size from one byte to

32,768 bytes long - though in practice a parameter must be a maximum of 8192 bytes

long in order to fit into the header area.

All parameters contain a six bit type indicator, and ETSI specify many useful pa-

rameter encoding schemes including time of day, and textual information given in a

specific international character set. For DABWeb new parameter types have been

introduced to indicate that the content part is encrypted and to map each of the files

– 43 –

4.2 Mapping a web tree structure onto a stream of MOT objects DABWeb Design

in the content part back to a hierarchical web site tree data structure.

A maximum of 232 different groups of MOT objects can be distinguished between

numerically. Each group is considered to be one web site by DABWeb. For this

reason the DABWeb server must ensure that each web site broadcast has its own

unique group identifier, and rollover of the group identifier must be considered. It is

possible that an encryption system could be implemented where a smart card would

know which group identifiers it is able to decrypt (and maybe which keys to use).

The MOT parameter types ContentName (type 12) and ContentDescription (type

15) are used by the DABWeb system to map hierarchical web trees retrieved from

the Internet into a serialized stream of MOT objects. Access to files over the Internet

via hypertext transfer protocol (HTTP) requires both the file name and address to

be specified using a uniform resource locator (URL). The URL uniquely identifies

a file’s position anywhere on the Internet. In DABWeb the ContentName parame-

ter is used to contain the filename part of the URL (e.g. /dfm/home.html), with

the ContentDescription parameter containing the Internet address of that file (eg.

www.st-andrews.ac.uk).

A new parameter (type 16) is used to indicate the length of each individual file com-

prising the content part. With more than one file stored, the parameters associated

with each must appear in the parameter area in the same order that the files ap-

pear in the content area. It is assumed that each subsequent file is from the same

Internet URL as the previous (the same web site), unless a new URL parameter is

supplied along with that file’s name and length parameter. With these three parame-

ters a DABWeb receiver can cache complete web trees given an input stream of MOT

objects.

If DABWeb was to be used as a high bandwidth system with many thousands of web

sites available for download, more care might be needed to ensure that different web

trees were not broadcast with the same group number so as not to confuse receiver

client cache managers. After an MOT object used to transport all or part of a web

– 44 –

4.3 Creation of a Virtual DAB data channel device driver DABWeb Design

tree has been decoded, the DABWeb receiver client makes use of each file’s Internet

address in order to cache the files the object contains. The client cache creates a

single directory folder for each web tree, and names that folder the URL of the web

tree. Files received belonging to a web tree which already has a folder in the cache

are stored in that folder. Within cache folders sub-folders are created when needed,

so that the full hierarchical structure of a web site is cached.

The size of the content part of an object is a maximum of 228 bytes long. In practice

this should not provide a limitation for DABWeb, and an optional unknown size flag

is provided if streamed content was ever used. An analysis (later in this chapter)

of the BEAST encryption system links the maximum size of an MOT object to the

maximum data rate theoretically possible using a smart card based decryption system.

4.3 Creation of a Virtual DAB data channel device driver

The creation of the virtual broadcast data channel software layer allows clean separa-

tion between higher layers in the MOT protocol stack, and lower layers which depend

on the type of data transport (XPAD or Packet mode) being used, and device specifics.

The goal has been to allow the creation of a single Java object representing a single

broadcast data channel - either a full subchannel or an XPAD stream.

Each data channel object would provide the same software interface whichever trans-

port method was selected when the object was created. The only device specificity

to be considered is that data channels connected to DAB receiver equipment will be

read only and transmitter devices will only allow a write only channel.

With this software layer in place, along with a standard framework into which drivers

for specific DAB devices can be written, access to information services provided by

DAB networks should be as easy as streaming data to or from a local file.

– 45 –

4.4 Using JavaCard to decrypt a multimedia data stream DABWeb Design

4.4 Using JavaCard to decrypt a multimedia data stream

In an ideal secure system the untrusted host computer would pipe an entire multi-

media data stream to a smart card, and have the card return the decrypted stream

to the host. The card would charge for each item of content decrypted, for example

by decrementing a counter, and the untrusted host would never be able to know the

secret keys held on the card, and so circumvent the charging mechanism.

However the round trip time (table 4.1) for sending encrypted blocks of data to a

smart card and the card then returning the resulting decrypted block is many times

higher than if the same blocks were decrypted entirely by the host computer.

Rtt = Time to send data to smart card including command +
Time taken for smart card to decrypt data +
Time taken to return decrypted result

Table 4.1: The Round Trip Time (Rtt) from host to smart card

This is due to the card’s computing speed being relatively slow (compared with the

host computer), and the card-host communication channel adding significantly to the

time delay. In addition there is an upper limit to the amount of data the smart card

can decrypt at once due to limited memory resources on the card. It is the case that

today’s JavaCard technology accessed through OpenCard is not able to decrypt a

DABWeb data stream in real time (in the order of about 2Kb/second for a single

PAD channel).

The BEAST RK algorithm takes a different approach, using the smart card device

to decrypt only the first 160 bits from each block of content. The first 160 bits

along with the block’s 160 bit session key are sent to the smart card. The card

then decrypts these using the secret keys and returns only the resulting 160 bits

of decrypted content. The use of only the first 160 bits in this way is specified by

Lucks [48] who holds that this allows BEAST RK to be secure as discussed in the

Component Technologies chapter.

– 46 –

4.5 Creation of OpenCard services for JavaCard DABWeb Design

The remainder of the n-byte block (n-20 bytes) is then decrypted using a stream cipher

(generated using the SEAL stream cipher algorithm) on the untrusted host. Since

the host can generate the stream cipher very quickly the remainder of the decryption

operation takes very little extra time. If round trip time for the card to decrypt 20

bytes combined with the time for the host to decrypt n-20 bytes is less than or equal

to the time taken to receive n bytes (at data rate n bytes/second) then real time

decryption is possible.

Normal network buffering can be used to smooth over variance in arrival rate of

continuous data streams, so in fact only the average data rate would have to satisfy the

condition. Experimentation with different sized client-side buffers would be needed,

also taking into account that many MOT objects are repeat broadcasts, and so do

not need to be decrypted a second time.

4.5 Creation of OpenCard services for JavaCard

OpenCard provides built in services for many common smart card uses such as card

holder verification and services allowing a smart card to be used as a low capacity

file store. Since BEAST is a custom application, a new set of card services has been

written. Card services also require associated card service factories which are linked

into the OpenCard framework, and allow the framework to recognize a specific type

of smart card, and create the appropriate type of card service.

The OpenCard service BEASTCardService to be written should operate as follows

in conjunction with a client requiring BEAST decryption services. On startup, a

client application registers itself with OpenCard. The OpenCard software initializes

all connected card terminals (if it has not already done so for another application)

and then goes back to sleep. Card terminals are usually registered to OpenCard by

means of a .properties file which is standard practice for Java extensions and will

be parsed by OpenCard on startup. The .properties file also specifies the location

of CardService and CardServiceFactory classes.

– 47 –

4.5 Creation of OpenCard services for JavaCard DABWeb Design

After a client has registered itself with OpenCard it can choose how it can interact

further using three different software models :

• Java events are generated whenever a new smart card is inserted or removed,

and an OpenCard client program can capture these events. The event driven

model does not require client applications to block while awaiting a smart card,

• The client can poll OpenCard, continuously waiting for a smart card to become

available,

• The client can call a blocking function in OpenCard, WaitForCard which does

not return until a smart card becomes available.

When a smart card is inserted into an OpenCard card terminal the client can decide

whether it is interested in that card, and if so ask OpenCard to instantiate appropriate

card service. For DABWeb, this is a collection of services as written in the class

BEASTCardService.

In the case of BEASTCardService, a BEASTCardServiceFactory must first recognize

that a BEAST JavaCard has been inserted into an OpenCard card terminal. It

then creates an instance of a BEASTCardService class which it passes to the client

application. Client applications use a set of high level OpenCard calls to learn whether

a smart card is in the card slot, and then ask to be given the card service class they

would like to use - in this case the BEASTCardService.

If the JavaCard in the card terminal slot identifies itself as a BEAST JavaCard then

OpenCard hands the application an BEASTCardService object, which the DABWeb

client can then use to perform decryption and check to see how many credits are left

on the card.

Once the client application has been passed the BEASTCardService object, three high

level functions are available to it as long as the JavaCard remains in the card terminal:

1. Upload keys and credits to the smart card applet. This is done only at the

server-side and the cards are then sold to DABWeb users,

– 48 –

4.5 Creation of OpenCard services for JavaCard DABWeb Design

2. Decrypt a content byte array with a given session key. This operation is done

each time a client decrypts received content,

3. Read the remaining number of credits on the smart card.

Making the upload keys function available to untrusted hosts does not compromise

the cryptographic security of the BEAST RK algorithm. Since only valid keys will

be of any use in decryption, as long as only trusted parties know the secret keys, it

does not matter that others may try to upload incorrect keys to the card.

When a charging system requires that a credit value be associated with a set of secret

keys so the keys can only be used a set number of times, then that value should be

uploaded only after the keys have been placed in non volatile memory in the card.

The BEASTCardService function to upload keys, first uploads all the keys, and then

the credit value associated with them only after the keys have been uploaded. This

ensures that new credits cannot be uploaded for old keys by powering down a card

prematurely - something that might be possible should the credits be uploaded first.

The OpenCard CardChannel software layer is a virtual channel through which a ter-

minal can communicate with a smart card. For example when the BEASTCardService

would like to talk to a JavaCard a CardChannel may be requested for the card termi-

nal that the JavaCard is currently connected to. APDU’s may be sent and received

through a CardChannel, and the card service object concerned need not worry about

how many card terminals are connected, or what type of device they are.

When OpenCard performs an applet select, the previously selected applet on the

JavaCard loses any transient (volatile) state that it currently holds. Since several

client OpenCard applications may be assuming that they have access to their card

applet, OpenCard should attempt to restore the state of an application’s JavaCard

applet, when the original applet is re-selected. Alternatively the OpenCard service

can request mutexed access to the JavaCard, and if successful, OpenCard will only

allow that card service to use the JavaCard. A card service should either be able to

restore context on exit or else request mutexed access to the card.

– 49 –

4.6 Functional units of the BEAST RK algorithm DABWeb Design

Since an applet select need not be performed if the correct applet is currently selected,

OpenCard services which cooperate and remember which applet is selected can avoid

the overhead of performing an applet select before each JavaCard operation.

4.6 Functional units of the BEAST RK algorithm

Figure 4.4: Lucks’s original diagram [48] of the BEAST RK encryption system

Figure 4.4 indicates each functional block involved in the BEAST RK encryption pro-

cess. Decryption is performed by applying the inverse of these steps to the encrypted

data. The three functional components of the BEAST RK algorithm are :

1. The SHA-1 secure hashing function which can take an arbitrary sized byte array,

and generate a 20 byte hash value unique to that byte array.

2. The SEAL stream cipher function which can expand a given 160-bit hash se-

quence into an n-byte stream cipher where n is the required number of bytes.

The process generates the same n-byte sequence for the same 160 bits every time.

– 50 –

4.6 Functional units of the BEAST RK algorithm DABWeb Design

The process cannot be reversed, and so allows cryptographically secure ciphers

to be generated.

3. A BEAST RK specific variant of the SHA-1 algorithm SHAKX
which uses the

SHA function to generate a hash of one of the BEAST RK secret keys - KX -

exor’ed with a bit string of the same length.

The same three secret keys used by BEAST RK for the encryption of content must

again be used to decrypt that content. Three keys are used by BEAST RK to provide

stronger encryption than is achievable with two keys. See Lucks [48] for more details.

Key 1 is 320 bits in length and keys 2 and 3 are both 160 bits in length. Each of the

three keys is randomly generated, and a keyset of all three keys is known to both the

users smart card (for decryption operations) and the DABWeb server (for encryption

operations).

Content is encrypted in two parts along with a 160 bit random value to be used in

generating a unique session key, and cryptographic cipher for the content. The first

160 bits of content are labeled R*, with the remainder being labeled R**. Because

the content is encrypted on a trusted host before it is broadcast you do not need a

smart card for encryption. A session key L (size 160 bits) is also introduced into the

process, which must be generated using a secure random function (one is supplied as

part of the Java SDK).

From figure 4.4 the inverse of the encryption process can be determined, and so the

formula for the SEAL cipher that the JavaCard must compute can be derived. This

acts on the outputs from the encryption process, T*, U and T**, and is shown in

table 4.2.

The JavaCard is passed the U and T* values, and returns the result of the above

function. From the JavaCard’s output, the SEAL expanding hash (stream cipher)

function generates a cipher of the same length as the byte array T**. The SEAL

function executes on the host, after using OpenCard to retrieve the JavaCard part

of the decryption operation. After the SEAL cipher has been generated, it is exor’ed

– 51 –

4.6 Functional units of the BEAST RK algorithm DABWeb Design

shakey(2, exor(shakey(3, T*), U))

With the following defined functions :

shakey(key number, 160 bit value input) yields the BEAST RK specific
SHAKX

function using secret keys 1, 2 or 3.

exor(array1, array2) returns the value of the two byte arrays bitwise exor’ed
together.

Table 4.2: The on smart card part of the BEAST RK decryption process

with the T** array, and then the decrypted T* and T** are concatenated together

to yield the decrypted plain text.

The original session key, L is never recovered, however continuing the inverse of the

encryption process the JavaCard could find this value. It is of no direct use if it is

computed randomly. Implementation of BEAST is helped by Java’s built in SHA

Secure Hash function. This function is also present in the JavaCard’s on board vault

of cryptographic functions.

4.6.1 BEAST encryption of MOT objects

BEAST RK encryption is used to encrypt an MOT data stream with each block

encrypted being the content part of one MOT object. An extra parameter known as

BEAST U is present in the header of each encrypted MOT object containing a session

key (the parameter’s presence is the indicator that the block is encrypted). Since

an MOT object is a container for one or more physical files making up a web site,

extraction of individual files is only possible after decryption of the whole block has

taken place.

After the entire content block is decrypted individual files can be extracted and cached

by a DABWeb client. Multi-file MOT objects are important to BEAST because the

data rate of the incoming stream imposes a minimum size restriction on each block

decrypted in order to achieve real time decryption.

– 52 –

4.6 Functional units of the BEAST RK algorithm DABWeb Design

4.6.2 Charging strategies for decryption using the JavaCard

Since the BEAST U session key was generated in conjunction with the entire content of

each file using a contracting hash function (SHA), use of a non-random value might not

compromise the cryptographic security of the BEAST algorithm to an unacceptable

standard. For example selecting four ranges within which a random value could be

chosen, and using each range as an indication of charge value or that a new charging

time period had begun.

If the use of the session key was not possible, then the first few bytes of any BEAST

encrypted content could be used for the same purpose with no danger of loss of

cryptographic security. Once the card had decrypted the appropriate bytes of content

it could then compare them to the same bytes recovered from the last decryption

operation. If they were different then the card could assume that a new time period

was in effect and that the user should have a credit debited. Optimally this charging

information would be held in the first 20 bytes of content, so that they would be

known to the JavaCard BEAST applet after decryption. In this way the DABWeb

system could charge for content by the day, and the same content being received twice

on one day would not cause the user to be charged more.

A more advanced variant of this system would be needed if some content was likely

to be the same over several days as it would seem unfair to charge users twice for the

same thing (unless of course the DABWeb service provider was charging on the basis

of service availability). The modification would require the smart card to keep track

of the values associated with the last four or five decryption periods. Only when the

first few bytes did not match any of the last few sets decrypted would a DABWeb

user’s smart card be charged one credit.

Such a system would require more intelligence on the part of the server, but would

allow fair charging for services that were updated daily, and those that were updated

less frequently e.g. weekly. The nature of DABWeb would make its use for services

that are updated less frequently than this limited.

– 53 –

Chapter 5

DABWeb Implementation

Java was chosen for most of the software implementation, allowing a modular object

oriented approach. The Java Software Developers Kit (SDK) with an associated

extension package java.x.comm allows communication with peripheral devices, for

example by RS232 interface, however some device interface types are not supported.

For this reason the DABWeb system has integrated low level C code using the Java

Native Interface (JNI).

The use of Java has allowed most of the system to be portable to any architecture

which has a Java Runtime Environment (JRE). Implementation work is divided be-

tween the DABWeb client and server programs, and then further subdivided into the

following components :

• The web server system which schedules web content carousels appropriately and

manages encryption and key generation when required,

• A network session layer that complies with and extends the MOT standard for

DABWeb specifics. This has also been developed entirely in Java and provides a

uniform set of multimedia object encoding and decoding functions for use with

encrypted web content,

– 54 –

5.1 Client Implementation details DABWeb Implementation

• A network transport layer for DAB based network devices, including drivers for

a selection of development DAB receiver devices, and one transmitter device

used to test the system. This has been written in C, making use of Java Native

Interface technology to communicate with higher layers of the protocol stack,

• A smart card based decryption applet program that performs the on card part

of the BEAST decryption process,

• A selection of OpenCard card services that allow access to the BEAST card

applet, for uploading of secret keys and credits (server-side), and decryption

operations (client-side). Also a method of charging for each decryption operation

that will inform the user how many credits are left on a BEAST card,

• The client-side cache manager and GUI which allows web pages to be received

and stored in local storage, removed when they become out of date, and de-

crypted on demand,

• The java.x.comm extension has been used to create a DAB network simulator

allowing the client-side software to connect directly to the server, over an RS232

serial data link in the laboratory.

As much of the code as possible has been made common to both the client and server.

5.1 Client Implementation details

Figure 5.1 shows an overview of the implemented client system. Within the client-

side MOT protocol stack no attempt is made to cache incomplete MSC data groups,

and though it would be possible to do so if only a few frames from the group were

damaged, it is unclear whether this is worthwhile. Longer trials of DABWeb in

different reception conditions should resolve this and help decide whether any extra

effort should be made by a receiver client to keep damaged data groups in a cache

– 55 –

5.1 Client Implementation details DABWeb Implementation

Transmitter device

DAB Web drivers for radio devices
JavaXComm

JavaXComm

JNI
to DAB data devices.

Cache Manager

Open Card framework for Smart Card devices

by client)

services service
layer.

and channel
objects.

a receiver / transmitter..
is written in C to control
A specific device driver

(not used

DSP DAB decoder

DAB Core PCI card

Null Modem Device

Philips 752 Receiver

BEASTCard

Decryption
ofcontent.

Cache home page

Java Device Interface
The MOTDataChannel
java object allows access JN

I
JN

I JN
I

MOT Protocol
Stack.

Used to decode
MOT objects.

Decrypts and
stores objects in
the client cache.

DABWeb GUI

Appropriate Open Card factories....

BEAST
Card

OpenCard
Card terminal

Card Terminal

Native DAB Drivers

java.x.comm driver

The user's own WWW browser....

Figure 5.1: Overview of a DABWeb client, showing data flow between the different components

Figure 5.2: The client side DABWeb GUI

– 56 –

5.2 Server Implementation details DABWeb Implementation

until that specific data group is repeated. Incomplete MOT objects are carefully

cached though, and completed when they are repeat broadcast.

A Graphical User Interface (GUI) has been created using the Java Abstract Win-

dow Toolkit (AWT) software, to allow users to follow the progress of DABWeb in

downloading web trees. The GUI (fig. 5.2) lists each complete file downloaded and

decrypted, and also allows the user’s chosen web browser to be launched viewing the

DABWeb home page. In the future such a GUI might be expanded to allow configu-

ration of a receiver device, including the audio output functions of the receiver.

5.2 Server Implementation details

The DABWeb server has been implemented to integrate with WebFS, and closely

resembles the server architectural overview in the design chapter. No GUI has been

implemented, as console based I/O allowed adequate progress monitoring for the

initial prototype. For this reference implementation BEAST secret keys are built into

the Java source of the server. These may be uploaded to a decryption smart card

using a separate command line program which includes the same secret key source

file, and interacts with the appropriate BEAST OpenCard services.

5.3 Object Serialization for Network Protocols

One key concept when implementing a communications protocol stack in Java is the

idea of object serialization. Java provides an internal mechanism by which objects

held in memory may be sent through a communications channel - either between

processes on the same host, or to a remote computer which also has a JRE.

The Java serialization mechanisms are not used for DABWeb because once serialized

the byte arrays created for Java objects bear no resemblance to the MOT standard,

and the use of serialized Java objects at any level in the MOT protocol stack would

– 57 –

5.3 Object Serialization for Network Protocols DABWeb Implementation

require that all clients and servers be tied to using a JVM. It is important that the

MOT standard be followed because it has been optimized for broadcast multimedia

data over DAB. While it may be possible to use Java’s own serialization mechanisms

they would be likely to be less efficient, and make no provision for repeats in the data

stream and caching of partially received MOT objects.

Instead DABWeb object serialization makes use of specific methods (see fig. 5.3) in

the classes representing different APDUs of the MOT protocol stack. For example

the MSCDataGroup class contains two constructor methods one of which accepts a

serialized byte array of an MSCDataGroup and the other constructs the object from

a group of Java parameters specifying the composition of an MSCDataGroup. Once

constructed, encode methods allow the object to be serialized, and passed down the

protocol stack, for example by splitting the MSCDataGroup into one or more XPADFrame

APDU objects.

Alternatively an APDU object can be decoded by methods specific to each APDU

class, which allow any part of an APDU to be read. These decoded parts can be used

to instantiate APDU objects of the next level up in the protocol stack, for example

an MOTObject APDU can be created by decoding the content parts of one or more

MSCDataGroup APDUs.

In this way individual APDU’s are implemented as self serializing Java objects. Since

each serializes according to the byte encoding specified in the MOT standard, there

is no mandatory requirement for a JVM to be able to deserialize that object on a

remote machine.

Since each APDU used by the DABWeb server (MOTObject, MSCDataGroup and

XPADFrame) has been written in this way, the implemented server system very closely

follows the server architecture illustrated in the design chapter. Also the same APDU

classes can be used for both the server and client programs, since the APDU classes

are written to include both encode and decode functions. This type of code re-use

should help the DABWeb implementation be more free from bugs, as only one class

– 58 –

5.3 Object Serialization for Network Protocols DABWeb Implementation

from a Java parameter set.
Allows APDU to be encoded

Creates APDU object from

Set of parameters to been coded

APDU Java Class
Throws checksum errors etc.Decoding constructor

Encoding constructor

One method for each part of the
APDU that has be endecoded.

The encoding methods...

arrayof this object encoded
appropriately.

Splits the encoded byte array into
segments, then creates a lower
level APDU object for each

...

The decoding methods...

Single Java parameter
returned from each

First step: Create the Java
object representing the
APDU, from either an

array or a set of Java
encoded (serialized) byte

Parameters.
into the APDU object.

Serialized byte array output.

Linked list of APDU objects
each created from the class
for the next lower level APDU
in the protocol stack.

decoding method.

segment.

Outputs the serialized byte

a serialized APDU byte array.

Serialized byte array input.

each of its component

Then, the resulting Java
object can either have

parts decoded using
APDU specific methods
or encoded (serialized)
into lower level APDUs.

Figure 5.3: Structure details of a self-serializing APDU class written in Java

– 59 –

5.3 Object Serialization for Network Protocols DABWeb Implementation

need be tested for each APDU.

The DABWeb client requires extra decoding classes between the APDU classes. The

decoding classes collect together lower layer APDU units, and then when the complete

serialization of a higher layer APDU unit has been received, the appropriate APDU

object is instantiated. If at construct time the checksum of the higher APDU fails, a

Java exception will be thrown, and that APDU can be discarded.

At the MSCDataGroup APDU layer in the protocol stack, a client-side decoder has

been written which is able to cache several MSCDataGroup objects until a complete

MOTObject is cached. This allows an MOTObject to be received in parts over several

repeat broadcasts. The decoder has an appropriate caching strategy to ensure that

it will not keep MSCDataGroup objects that will not be used in the future to assem-

ble complete MOT objects, for example because that MOT object is unlikely to be

broadcast again.

5.3.1 Java based Serial Communications for PAD services

RS232 communication in Java is provided for by the java.x.comm package. This

is an extension to the core Java SDK, and is available from Sun in a stable release

version for Windows and Solaris. There is a version of java.x.comm for Linux [28],

but unfortunately this is less stable, and the ready to build version of its source tree

requires debugging traces to be manually disabled at build time.

In order to receive serial data with Java, the communications handler must be written

as a separate thread to the main program. Threading semantics were found to differ

between Win32 and Linux versions of the JDK, adding to the design considerations

of the client and server which are both intended to be portable between Win32 and

Linux JVMs.

PAD services may be input to the transmitter system through a java.x.comm RS232

link into one of the encoder units. Data must be appropriately framed (according

– 60 –

5.3 Object Serialization for Network Protocols DABWeb Implementation

to a protocol supplied by the transmitter manufacturer [45]) for the encoder unit’s

current configuration.

5.3.2 Transmission of MOT Streams in Packet Mode

In order to transmit MOT data streams in Packet Mode (over a devoted subchannel)

a different data interface must be used. As the MSC groups generated by the MOT

are the same as those actually sent in DAB transmission frames, two approaches

are possible to transport MOT streams from the DABWeb server to the Transmitter

system :

1. MSCDataGroup APDUs could be sent in packet form directly to a source encoder

via one of the higher speed interfaces built into the encoder unit - either RS449

or RS485. Communication with a source encoder would be via a proprietary

system that would have to be found from the manufacturer of the transmitter

system [45]. A native driver could then be written for DABWeb.

2. MSCDataGroup APDUs could be encoded into the format specified by the Service

Transport Interface (STI) [53]. The STI is fully specified by ETSI, and describes

all aspects of the physical connection and protocol used to send data from a

source encoder to a DAB multiplexer unit. This approach would bypass the

source encoders, and allow the use of a standard communication protocol. To

do this though, hardware (and an appropriate software interface) would have to

be developed to output data from the DABWeb server in STI format.

Once received, MSC groups are made available to a DABWeb client via the Radio

Data Interface receiver output. This interface is specified by the Eureka RDI taskforce

[16], and provides a well defined way to access a complete DAB ensemble as it is output

electrically or optically from a DAB radio receiver. In its current state DABWeb

cannot use Packet Mode transmision, as the necessary hardware to implement this

was not available at development time.

– 61 –

5.4 The MOTDataChannel DAB Device Drivers DABWeb Implementation

5.4 The MOTDataChannel DAB Device Drivers

This software layer has been written to provide access to any kind of DAB hardware

device in a much higher level way than by direct interaction with java.x.comm. It

provides a virtual communications channel through which serialized MSCDataGroup

objects may pass, and also implements an architecture allowing low level natively

written software drivers for specific devices to be plugged in.

Allows a stream of
frames to be decoded.

XPAD Queue

DAB
Network

Group Splitter
Splits each group
into XPAD frames.

Received XPAD frames are
queued, and then assembled
into Data Groups by native
code. No assembly is needed
for packet data.

Channel read/write methods

Byte arrays into
transmit devices.

'Push' method 'Pop' method

MOTDataChannel
Specified device, data type (PAD/Packet)
Constructs a data channel for the

and connection (e.g. RS232).

Serialised ADPU objects

Creates a data channel object
Java Constructor

Byte arrays from
receiver devices. output as Java byte arrays.

Transmitter Driver(s)

class)
(Java

native drivers, so a list mapping Java objects to device driver contexts is kept.
Several MOT Data Channel objects may use the same

(Native driver code)

Device driver registry

Device specific code. Device specific code.

Pa
ck

et
 D

at
a

Pa
ck

et
 D

at
a

Assembles data groups from
PAD Service receiver

the frames on top of the queue.

OS Specific I/O
device specific communications on a specific hardware / OS platform.

Used to access RS232 serial ports, and other

Devices must be either read or write only.

Receiver

R
ec

ei
ve

r

Device

Serialized MSC Data Groups
transferred across JNI.

Serialized APDU

(byte arrays).

Objects ready
for transmission

Receiver Driver(s)

PA
D

 D
at

a

PA
D

 D
at

a

Figure 5.4: Illustration of MOTDataChannel device driver architecture

At the highest level the MOTDataChannel Java class (see fig. 5.4) is presented which

when instantiated will bind to a connected DAB receiver or transmitter device. Seri-

alized MSCDataGroup objects (or other byte arrays) may be pushed into the channel

in the case of transmitter devices, and complete MSCDataGroup APDUs are popped

out of a receiver device channel as byte arrays. Below this lies a natively written

driver library, which is modular, and may be compiled on both Win32 and UNIX

platforms by linking platform specific I/O and device driver code.

– 62 –

5.4 The MOTDataChannel DAB Device Drivers DABWeb Implementation

The native library manages all buffering and further splitting/assembling of seri-

alized MSCDataGroup objects into/from groups of XPAD frames. From Java an

MOTDataChannel object is instantiated (see table 5.1) with a given receiver (read only)

or transmitter (write only) type, which type of transport is to be used (PAD/Packet

mode boolean indicator) and details of how the device is connected to the host com-

puter.

MOTDataChannel myChannel = new MOTDataChannel(
MOTDataChannel.philips752, "COM1", true) ;

Table 5.1: Opening a new MOTDataChannel for a receiver device

The level of MSCDataGroup was chosen for the MOTDataChannel, as this is the first

layer in the MOT protocol stack that is common to both packet mode data services

and PAD based data services. The native library code is built as a dynamically

linkable library, which the Java MOTDataChannel class binds to at class load time. The

MOTDataChannel class can then be instantiated many times, and each instantiation

registers itself with the same native code library at construction time. The native

library keeps track of all current receiver/transmitter devices being accessed by means

of a registry and allows more than one MOTDataChannel to be opened per device

(for devices that support this). In effect the native library provides an easy and

transparent mechanism for Java programs to access data transfer services provided

by DAB appliances. Once an MOTDataChannel is created for a DAB receiver, all that

the client Java application needs to do is keep polling the channel.

The pseudo code example in table 5.2 only shows an MSCDataGroup object being

created from the output of the MOTDataChannel, but in fact any kind of data could

be transmitted and received over this data link.

5.4.1 Implementation of the MOTDataChannel System

The library provides core code to handle splitting and assembling of MSCDataGroup

APDUs from XPAD frame groups or packet groups. Also provided is a clean set of

– 63 –

5.4 The MOTDataChannel DAB Device Drivers DABWeb Implementation

// An undefined byte array to accept incoming data
byte[] newData ;

// We use this serialised APDU class to decode incoming data groups
MSCDataGroup newGroup ;

while (1 == 1) {
newData = myChannel.popDataGroup() ;

if (newData != null) {
newGroup = new MSCDataGroup(newData) ;
// Process the new MSC data group object here
}

}

Table 5.2: Reading MSCDataGroup objects from an MOTDataChannel

interface calls allowing each receiver/transmitter device driver to be represented as an

Abstract Data Type to the rest of the library allowing new DAB receivers/transmitters

to be written with relative ease.

Serial port access under Win32 (Windows 95 and NT) proved to be problematic in user

mode code. The initial Win32 serial I/O was written in a multithreaded fashion with a

native thread reading data from the serial port, and continually filling a circular buffer

which was accessed from another thread being polled by MOTDataChannel objects.

This multithreaded code appeared to work, until the system was halted with a user

abort (CRTL + ’C’). When this happened, the JVM cleaned up all code and exited to

the host operating system. Unfortunately the serial port reader thread continued to

run (outside the control of the JVM under Windows), and corrupted memory causing

the whole machine to crash.

The fix for this has been to access the serial port using non-multithreading code. This

proved unreliable under Windows NT, as bytes are occasionally lost from the input

stream. Multithreaded access to a Win32 serial port allows the use of overlapped read

events, which are a much more stable way to access the serial port. Single threaded

access to the Win32 serial port only allows for polled access, leading to the occasional

byte loss under Windows NT. However the single threaded code works well under

– 64 –

5.4 The MOTDataChannel DAB Device Drivers DABWeb Implementation

Windows 95.

5.4.2 MOTDataChannel Device Driver Requirements

Writing new device drivers for the library requires three function call stubs to be

completed. A device initialization call, finalization call, and polling call must all be

implemented. Data is passed to/read from the device driver each time the library calls

the polling function. Device drivers may handle either packet mode or PAD mode

data or both, the required type being specified to the driver on initialization. It is up

to the Java MOTDataChannel class to ensure that a device driver type is available for

PAD/Packet data.

Additionally two 100% Java based device drivers have been written which are not part

of the core MOTDataChannel framework. The first of the two is a PAD receiver device

driver which emulates the communication protocol used by the transmitter hardware.

Using this transmitter emulating device driver, a direct null modem (RS232) connec-

tion can be made between a DABWeb client (which presents the same RS232 input

interface as a transmitter device) and the normally configured DABWeb server (which

believes that it is connected to a transmitter, when in fact it is directly connected

to the client). This configuration is used for testing purposes in the laboratory. The

second 100% Java driver is used to feed PAD services into the transmitter. Both Java

drivers do not make use of the native library, instead using java.x.comm directly. The

same software interface is provided via the MOTDataChannel object which contains

special code to instantiate a java.x.comm based driver.

5.4.3 Integrating MOTDataChannel with the DABWeb Client

Since the MOTDataChannel class outputs complete serialized MSCDataGroup objects,

the Java decoder and APDU classes for higher level layers of the protocol stack need

only concern themselves with the caching of incomplete MOT objects.

– 65 –

5.5 Device Driver Implementations DABWeb Implementation

The use of native code in the reference implementation does confer an advantage in

the porting a DABWeb client to a pervasive computing device with limited memory

resources. Such devices often do not have a JVM. For example a watch or palmtop

organizer would be a highly desirable to use as a DABWeb client. To port the

DABWeb client would require the upper layers of the MOT protocol stack to be

rewritten in C, appropriate native device drivers and I/O code written for the target

platform, and the whole system integrated with a browser and cache.

5.5 Device Driver Implementations

Data to be transmitted must be ready for sending each time the transmitter system

makes a frame request. In PAD transport mode a 54 byte PAD frame is typically

transmitted once every 24 milliseconds as part of each subchannel audio frame. Audio

frames typically contain 2 bytes of F-PAD (Fixed PAD), which can be used for ap-

plication specific purposes - for example broadcasting dynamic labels which textually

describe the current audio program - and 52 bytes of XPAD data framed appropri-

ately. PAD data is sent to the transmitter in ISO MPEG frames [45], each time the

transmitter makes a frame request.

Receiver specific device drivers must be implemented as specified by each manu-

facturer. The RDI interface standard is common however, though special purpose

hardware is required to decode PAD or Packet mode data from an RDI data stream.

DABWeb uses the Fraunhofer DSP card for this purpose.

5.5.1 PAD data from the Philips 752

The rack mounted Philips 752 DAB reference receiver (see fig. 5.5) may be tuned by

means of front panel controls, and PAD data is output from the currently selected

subchannel by means of an RS232 interface. In addition the Philips receiver also

supports RDI data output via optical and electronic interfaces. PAD data is output

– 66 –

5.5 Device Driver Implementations DABWeb Implementation

Figure 5.5: The Philips 752 reference receiver

from the receiver once every 24 milliseconds at 38400 baud in an ISO MPEG frame

which closely resembles the PAD data input format of the DAB transmitter.

Even if no data is fed into the transmitter, the 752 will still output a garbage ISO

MPEG frame of a pre-configured length, which is problematic to DABWeb should the

server miss one 24 millisecond time slot. The introduction of sequence numbers to

each XPAD frame, or ensuring that no XPAD frame slots are missed by the DABWeb

server cures this problem.

5.5.2 The Fraunhofer DSP PCMCIA card

Figure 5.6: The DSP card connected to a BOSCH DAB core receiver

The DSP card from Fraunhoffer (see fig. 5.6 bottom right) is connected to an optical

RDI output via an optical fiber cable and an optical-electronic extender box. Test

– 67 –

5.5 Device Driver Implementations DABWeb Implementation

application software is supplied with the card which can allow, for example, the audio

part of a subchannel to be captured to a data file. Once captured audio data files

may be played back using an MPEG audio player on the host computer.

It has been found that RDI output from the BOSCH DAB Core receiver must be set

to a 20-bit configuration, which required a custom modification to the DEAPspace

group’s tuning software. Alternatively the card can be connected to the optical output

of the Philips 752 receiver which works without any further configuration.

A Win32 software library is supplied with the card (binaries only) which provides an

API for accessing ensemble components. The PAD part of any subchannel can be

selected via the API, and then each relevant PAD frame received will be placed in a

circular buffer by the DSP card. Since the buffer is held in shared memory between

the host PC computer and the card, the DABWeb client can read and process the

PAD frames.

A native driver has been written to handle decoding XPAD frames from subchannel

data. Problems associated with the Philips receiver, and phantom frames being output

when none were transmitted should not occur with the DSP card, as only valid frames

are placed into the circular buffer. For this reason each frame must be encoded by the

DABWeb server exactly as expected by the card (according to the DAB standard) in

order for the card to decode it.

5.5.3 The BOSCH DABCore stand alone receiver unit

This unit (see fig. 5.6 top middle) is tuned via an RS232 serial link with Java software

developed by the DEAPspace group. It provides analogue audio output, and also data

output via an optical RDI interface. Initially BOSCH had indicated that it was inter-

ested in making the PAD data component of the current subchannel output from the

receiver’s RS232 port, plans which have apparently been placed on hold. A software

upgrade to the receiver’s flash ROM would be involved. Connection links on the

– 68 –

5.6 Integration of the BEAST RK system with DABWeb DABWeb Implementation

Printed Circuit Board of the DABCore allow RDI data to be extracted electronically

in addition to the optical output supplied.

5.5.4 The DABCore PCI based receiver

The internal PCI card receiver from BOSCH allows the host PC to directly access

ensemble data components via the host’s PCI bus. Tuning software is supplied, and

BOSCH have made the source tree of this software available to the DEAPspace group

(for Linux). The PCI card also has an external optical RDI output.

The provided software for Windows NT includes a slide-show data service display,

and also comprehensive audio tuning and capture software. As the Linux software

sources to drive the card are available, a native driver will be created in the future

allowing DABWeb services to be received using the card.

This card also comes equipped with an RDI optical output. Initial tests indicate that

the RDI output is compatible with the Fraunhofer card with no further configuration.

5.6 Integration of the BEAST RK system with DABWeb

At the highest level of abstraction the BEAST RK system has been implemented

as two visible Java objects and one interface. They provide complete access to all

decryption, encryption and key management functions required by DABWeb, allowing

encryption and decryption of content, and management of secret keys :

• The BEASTKey class - A BEASTKey object is used only by the Server to encrypt

multimedia content, and handle the generation and storage of new private and

session keys. Instances of BEASTCard are used by both the client and server,

since both need to use the card to hold private keys.

• The BEASTCard class - BEASTCard objects allow high level calls to be made to the

BEAST system for decryption operations. It encapsulates all smart card related

– 69 –

5.6 Integration of the BEAST RK system with DABWeb DABWeb Implementation

aspects of the BEAST system including decryption, user credit management and

uploading of new secret keys to a card, which must be supplied as a BEASTKey

object.

• The DABWebGui interface - This Java interface has been designed to allow the

current state of a BEAST smart card to be reflected to users of DABWeb through

some form of GUI. The interface informs the GUI when a new smart card be-

comes available or is removed, and the remaining credits on the current smart

card. It is managed by the BEASTCard object.

In addition to server-side encryption the BEASTKey object is also able to decrypt

content. This function only works if it holds the correct secret keys, and so was used

only during development of the algorithm to ensure that content could be correctly

encrypted and then decrypted. The ability of the BEASTKey object to decrypt required

the implementation of the smart card based code on the host. This was used during

development to ensure that the smart card was generating the correct result for each

decryption.

5.6.1 Implementation of the BEAST RK system

Development of the BEAST RK system was subdivided into three separate software

systems :

• The on-card software, which executes decryption operations using the secret keys

contained in the smart card.

• The card terminal communications software which handles all communication

between the smart card and the host.

• The provision of a high level software layer which handles encryption and de-

cryption of blocks and the uploading of keys and credits to a card with simple

function calls. Also required is a feedback interface which informs applications

– 70 –

5.6 Integration of the BEAST RK system with DABWeb DABWeb Implementation

of the current state of the smart card - whether one is present in a card terminal

and ready to decrypt, and how many credits it contains.

This high level software layer providing access to the BEAST RK system is encapsu-

lated in the BEASTCard object as described previously. This provides all functionality

relating to the smart card through the following calls :

boolean decrypt(byte[] content, byte[] sessionKey)

// This function decrypts BEAST encoded content (true on success)

This call will decrypt content using a smart card, given that the card is present and

ready to decrypt, and that the correct session key is available.

boolean setKeys(BEASTKey keys, int credits)

// This function uploads secret keys and a credit value to the card

The setKeys function is used in order to initialise new BEAST JavaCards (which

already have the applet downloaded onto them). It takes a BEASTKey object, and

downloads the three keys contained within that object, along with the given number

of credits.

int credits()

// This function returns the remaining credits on the card

Finally the credits function will always return the number of credits present in the

current smart card - none if no BEAST smart card is available.

Below the two high level objects (BEASTKey and BEASTCard) lie the card-host com-

munications layer which has been implemented using OpenCard, below which lies the

JavaCard applet.

– 71 –

5.6 Integration of the BEAST RK system with DABWeb DABWeb Implementation

5.6.2 The Development of the BEAST JavaCard Applet

Applet programs developed for a JavaCard must be written according to a defined

structure. Each must have an entry point which is called by the Card OS when a new

APDU has been received, and that applet is currently selected. The APDU entry

point must be able to process the APDU, and return an appropriate response or a

failure message in the correct ISO format [37]. Some data types are unavailable or

only partially available to applets, notably strings and integers - only short integers

may be used. In addition the JavaCard OS only supports a subset of the complete

standard JavaOS library.

Memory limitations are imposed on the Java programs executing on a JavaCard.

Once source code has been written for the JavaCard it is compiled into Java bytecode

using the standard javac compiler. Next the compiled .class file is converted into

a JavaCard specific format which removes all long string references to other Java

classes. Usually a JVM binds classes to other library classes dynamically at run time.

To do this the full textual name of each library class used is contained with the Java

class file so that the JVM can look up the appropriate libraries.

On the JavaCard a different system is used to ensure that the minimum number

of bytes are used to store applet code. The conversion of a normal Java class file

to a JavaCard applet file involves removing all textual names to other classes, and

replacing them with numeric tokens. The JavaCard OS has only a limited number of

classes which may be dynamically bound to, and so it is a simple matter to identify

each of them with a short integer or single byte.

Several other JavaCard virtual machine issues exist when every function and class

name string is replaced with a token. In the case of constructor methods, another

special token is needed to identify which method in a class is a constructor, since

comparison between the class name string and the method name strings in a class is

no longer possible.

In addition to reducing dynamic binding labels to tokens, the conversion of a Java

– 72 –

5.7 The current state of the DABWeb reference implementation DABWeb Implementation

class to a JavaCard applet file also signs the applet so that it may be downloaded to

the JavaCard. A tool is provided to download applet files to the card.

5.7 The current state of the DABWeb reference implemen-

tation

The DABWeb implementation currently consists of the client and server programs,

both tested and fully working, the BEAST RK JavaCard applet - also fully working

- and a small utility program which is used to upload secret keys to the on-card

applet. The server program can be demonstrated outputting complete web trees from

WebFS - optionally encrypted - for transmission. At present transmission is only done

using PAD mode, as we do not have the hardware or protocol specifications that are

needed to implement full subchannel (packet mode) transmissions. More work would

be needed to develop this aspect of the project. From a component view, my work

on the DABWeb project has yielded a complete, tested implementation of the MOT

protocol stack, the BEAST RK encryption, decryption and charging system, a client

side cache manager, and the software abstraction layer for specific DAB hardware

device drivers. These components have been integrated to form demonstration client

and server programs.

The demonstration server program is executed at the command line. Once it has

begun generating XPAD frames for transmission in PAD mode, and the transmitter

has been correctly configured, receiver clients may be started. The client system

being used in the laboratory is a ThinkPad 760ED, with a 133MHz processor and

Windows 95. I have written and tested a device driver for the Philips 752 receiver

on this platform, which along with the rest of the client software allows the reception

and caching of web sites. The client system has a GUI interface which lists each file

in a web site as it is decoded, so the client’s progress can be monitored. Also the

GUI displays a list of partially complete files that are waiting for a carousel to be

broadcast again so they may be completely received. This client functionality has

– 73 –

5.7 The current state of the DABWeb reference implementation DABWeb Implementation

been tested and found to be fully working, with the maximum number of partially

complete files that client will hold in memory being configurable. Both the client and

server software systems make use of the MOTDataChannel virtual DAB device driver

system for this demonstration. I have also implemented and tested a null modem

device driver, which allows a client and server machine to be connected together

directly by cable for laboratory testing purposes. The client side null modem driver

emulates a transmitter system, allowing the usual transmitter driver to be configured

on the server side.

My implementation work on the decryption system has yielded a working and tested

JavaCard BEAST RK applet, and a full set of OpenCard services to deal with the

BEAST RK encryption and decryption functions as detailed earlier in this chapter.

Timings when calling the high level decrypt function in the BEASTCardService ob-

ject indicate that to decrypt the first 20 bytes of content using the card takes 200

milliseconds. These timings were made using a PCMCIA smart card reader and as-

sociated PC/SC driver software which was used used beneth the OpenCard software.

The BEASTCard object provides a high level function call to decrypt an entire array

of content given that array along with the 20 byte session key. The BEASTCard object

coordinates the decryption effort making use of the BEASTCardService object for the

on-card part, and then completes the off-card part using the SEAL algorithm.

The BEASTCard code has been integrated with the DABWeb server program allowing

web trees to be encrypted before broadcast. This integrated server system has been

tested and was found to work. The BEAST RK decryption system has also been fully

integrated with the client program, and has been tested together with a PCMCIA

smart card reader decrypting a real-time PAD data stream that has been fed to

the ThinkPad from the Philips receiver. The client system has been found to work

well, and completely fulfilled the design requirements set out at the beginning of this

chapter. Another additional Java program called BEASTtest is used to upload keysets

and credits to the BEAST RK applet on a JavaCard.

Further work is needed on the scheduler part of the server system, which is rudi-

– 74 –

5.7 The current state of the DABWeb reference implementation DABWeb Implementation

mentary at present. The locations of web trees to be broadcast by the server are

currently hard coded into the Java source of the server program, and web trees are

then broadcast in a round robin looped fashion. A more advanced scheduling system

would be needed for a full scale DABWeb trial which allowed broadcasters to quickly

add or remove web sites from the schedule. A server GUI would also be useful. On

the client side, DABWeb drivers for the Fraunhofer DSP 536 card, and the BOSCH

PCI receiver card are currently incomplete, and further work is needed to make these

drivers operational.

The use of Java to implement the central components of the DABWeb system has been

successful. There were concerns that the use of a virtual machine with intermittent

garbage collection enabled would make the performance of real time communications

software unacceptably slow but this has not happened. Both the client and server

have proved to be capable of handling the relatively low throughput requirements

for decoding PAD data services. It should also be noted that much of the decoding

work is actually performed by the lower level C device driver code, which outputs

complete MSCDataGroup objects for further processing in Java. The hybrid Java/C

approach has worked well, with the demonstration client system being able to robustly

multitask on the Windows 95 ThinkPad whilst decoding an incoming stream of web

sites.

– 75 –

Chapter 6

Conclusion

The completed DABWeb system provides a demonstration platform for the viability

of wireless data services over DAB networks. The Java software implemented compiles

to a collection of JAR1 libraries which can quickly be incorporated into other data

broadcast projects, following the reusable component philosophy of Java.

The initial work presented here could quickly be combined with other wireless tech-

nologies so that a back channel can be incorporated into the system (much like MEMO

[33]) where user download requests could allow content to be scheduled juke box style.

In this way many users can surf in a interactive manner, with experimental trials

needed to determine the latency and scaleability of such a system.

DABWeb could also be adapted to handle other content types, for example to broad-

cast software updates. For this type of application, DABWeb client software could

be extended to allow the latest versions of software packages to be installed with no

user intervention. The encryption system would have to be expanded to allow such

upgrades to be targeted at specific clients - presumably those who own the software

being upgraded - additionally allowing the clients to trust the source of the software

updates.

Since a modular strategy has been employed through development, this system can
1Java Archive

– 76 –

Conclusion Conclusion

be quickly rebuilt to demonstrate different possible configurations. The reuse of com-

ponents should also allow rapid development of in-car DAB data services, where only

a new receiver driver would be required, and integration between the existing DAB-

Web system and a PAN to network between the car and other pervasive computing

devices.

– 77 –

Bibliography

[1] BackWeb, inc. http://www.backweb.com/, March 2000.

[2] Bluetooth homepage. http://www.bluetooth.com/.

[3] Allison C., Huang F., and Livesey M.J. Object Coherence in Distributed In-
teraction. In Correia, Chambel, and Davenport, editors, Multimedia’99, http://
www.egmm99.di.fct.unl.pt/, 1999. Springer-Verlag: New York.

[4] Allison C., P. Harrington, F. Huang, and Livesey M.J. Scalable Services for Re-
source Management in Distributed and Networked Environments. In SDNE’96,
pages 98–105. Macau, IEEE Press, June 1996.

[5] Fuhrhop C., Kraft A., and Kubis R. Object Carousel Simulator for Broadcast Ap-
plications. In Chambel Correia and Davenport, editors, Multimedia’99, http://
www.egmm99.di.fct.unl.pt/, 1999. Springer-Verlag: New York.

[6] Su C. and Tassiulas L. Broadcast scheduling for information distribution. In
Proceedings of IEEE INFOCOM, Los Alamitos, CA, USA, April 1997. IEEE
Computer Society Press.

[7] Horstmann C.S. and Cornell G. Core Java - Volume 1 - Fundamentals. Prentice
Hall PTR & Sun Microsystems Press, 1997.

[8] Perkins C.S., Hodson O., and Hardman V. A Survey of Packet-Loss Recovery
Techniques for Streaming Audio. IEEE Network, 1998.

[9] Flanagan D. Java In A Nutshell. O’Reilly & Associates, Inc. (USA), 1997.

[10] Gifford D. Polychannel systems for mass digital communication. Communica-
tions of the ACM, 33(2), February 1990.

[11] Gifford D., Lucassen J., and Berlin S. The architecture for large scale information
systems. In ACM Symposium on Operating System Principles, pages 161–170,
1985.

[12] DVB; Framing structure, channel coding and modulation for digital terrestrial
television. Technical report, European Telecomunications Standards Institute -
http://www.etsi.com/, F-06921 Sophia Antipolis CEDEX - France. EN 300 744.

– 78 –

BIBLIOGRAPHY BIBLIOGRAPHY

[13] J. Postel Ed. Transmission Control Protocol. RFC 793.

[14] Digital Audio Broadcasting (DAB) Distribution interfaces; Ensemble Transport
Interface (ETI). Technical report, European Telecomunications Standards In-
stitute - http://www.etsi.com/, F-06921 Sophia Antipolis CEDEX - France,
September 1997. ETS 300 799.

[15] Eureka. A Europe-wide Network for Industrial Research and Development.
http://eureka.belspo.be.

[16] Eureka 147 WG D RDI Task Force. Digital Audio Broadcast System Specifica-
tion of the Receiver Data Interface (RDI). Technical report, European Telecomu-
nications Standards Institute - http://www.etsi.com/, F-06921 Sophia Antipolis
CEDEX - France, November 1996. Issue 1.4.

[17] Herman G., Gopal G., Lee K., and Weinrib A. The Datacycle architecture for
very high throughput database systems. In Proceedings of ACM SIGMOD, May
1994.

[18] Robert Bosch Multimedia-Systeme GmbH and Co. KG. Bosch Multimedia
Homepage. http://www.boschmultimedia.de/, August 1999.

[19] INRIA. Web Canal Documentation. http://www.inria.fr/, 1998.

[20] Gemmell J., Gray J., and Schooler E. Fcast Multicast File Distribution. IEEE
Network, 14(1):58–69, 2000.

[21] Macker J. and Dang W. The Multicast Dissemination Protocol Framework.
Technical report, IETF Draft, 1996.

[22] Wong J. Broadcast delivery. Proceedings of the IEEE, 76(12), December 1988.

[23] Ljungquist J.H. Transport protocols for IP-Traffic over DVB-T. Master’s thesis,
Royal Institute of Technology, Department of Teleinformatics, Computer Com-
munications Laboratory, Stockholm, 1999.

[24] Savetz K., Randall N., and Lepage Y. Mbone : Multicasting Tomorrow’s Internet.
IDG : London, 1998.

[25] Tan K. and Xu J. Energy efficient filtering of nonuniform broadcast. In Pro-
ceedings of the 16th International Conference in Distributed Computing Systems,
pages 520–527, 1996.

[26] Rizzo L. Effective Erasure Codes for Reliable Computer Communication Proto-
cols. ACM Computer Communication Review, 27(2):24–36, 1997.

[27] Vicisiano L. and Crowcroft J. One to Many Bulk-Data Transfer in the Mbone.
In HIPPARCH’97, Uppsala, Sweeden, 1997.

[28] The Linux Operating System. http://www.linux.org.

– 79 –

BIBLIOGRAPHY BIBLIOGRAPHY

[29] Ammar M. Response time in a Teletext system: An individual User’s perspec-
tive. IEEE Transactions on Communications, 35(11):1159–1170, 1987.

[30] Ammar M. and Wong J. The design of Teletext broadcast cycles. Performance
Evaluation, 5, November 1985.

[31] Ammar M. and Wong J. On the optimality of cyclic transmission in Teletext
systems. IEEE Transactions on Communications, 35(1):68–73, January 1987.

[32] Marimba, inc. http://www.marimba.com/, July 1997.

[33] The ACTS Project AC 054 - Multimedia Environment For Mobiles (MEMO).
http://memo.lboro.ac.uk/, 1999.

[34] Digital Audio Broadcast (DAB) Multimedia Object Transfer (MOT) Proto-
col. Technical report, European Telecomunications Standards Institute - http://
www.etsi.com/, F-06921 Sophia Antipolis CEDEX - France, September 1998.
EN 301 234 v1.2.1.

[35] Negroponte N. Being Digital. Coronet Books, Hodder and Stoughton, A division
of Hodder Headline PLC, 338 Euston Road, London NW1 3BH, 1995.

[36] Vaidya N. and Hameed S. Data broadcast in asymmetric wireless environments.
In First International Workshop on Satellite-based Information Services (WOS-
BIS), November 1996.

[37] The International Standards Organization. ISO 7816 Smart Card Communi-
cations Standard. Technical report, ISO, 1 Rue de Varembe, Case Postale 56,
CH-1211 Geneva 20, Switzerland.

[38] Zwahlen P. Design and Implementation of a Secure Web-Based File System
(Crypto) WebFS. Master’s thesis, Eurecom Institite, Corperate Communications
Department, http://www.eurecom.fr/Corporate/, June 1999.

[39] Eureka 147 Partners. Radio broadcasting systems; Digital Audio Broadcast
(DAB) to mobile, portable and fixed receivers. Technical report, European Tele-
comunications Standards Institute - http://www.etsi.com/, F-06921 Sophia An-
tipolis CEDEX - France, May 1997. ETS 300 401 Ed.2.

[40] PC Smart Card Work Group homepage. http://www.pcscworkgroup.com, 1999.

[41] Philips Electronics N.V. ASA Laboratory Eindhoven. http://
www.sv.Philips.com/DAB, August 1998.

[42] Pointcast, inc. http://www.pointcast.com/, March 2000.

[43] Cooperstock J R. and Kotsopoulos S. Why Use a Fishing Line When You Have a
Net? An Adaptive Multicast Data Distribution Protocol. In USENIX’96, 1996.

[44] Jain R. and Werth J. Airdisks and AirRAID : Modeling and scheduling periodic
wireless data. Computer architecture news, 23(4):23–28, September 1995.

– 80 –

BIBLIOGRAPHY BIBLIOGRAPHY

[45] Rhode and Schwarz. Rhode and Schwarz Internet Homepage - http://
www.rsd.de. RHODE and SCHWARZ Gmbh and Co. KG Muhldorfstrasse 15,
D-81671 Munich.

[46] Acharya S. Broadcast Disks: Dissemination-based Data Management for Asym-
metric Communication Environments. PhD thesis, Brown University, May 1998.

[47] Hameed S. and Vaidya N. Log-time algorithms for scheduling simgle and multiple
channel data broadcast. In Proceedings of the International Conference on Mobile
Computing and Networking (MOBICOM), September 1997.

[48] Lucks S. BEAST : A fast block cipher for arbitrary blocksizes. In
IFIP Conference on Communications and Multimedia Security, pages 144–153,
http://th.informatik.uni-mannheim.de/m/lucks/papers.html, 1996. Chapman &
Hall.

[49] McCanne S. Scalable Multimedia Communication Using IP Multicast and
Lightweight Sessions. IEEE Internet Computing, 3(2):33–45, 1999.

[50] McCanne S. and Jacobson V. VIC: A Flexible Framework for Packet Video.
ACM Multimedia : San Francisco, pages 511–522, November 1995.

[51] Fraunhofer Institut Integrierte Schaltungen. DSP PC-Card 563. http://
www.fhg.de/english/index.html, 1998.

[52] Secure Systems Group, IBM Zurich Research Laboratory. IBM Smart Card for
e-Business - JavaCard. Saumerstrasse 4, Rueschlikon CH-8803, Switzerland -
http://bluez.zurich.ibm.com, 1999.

[53] Digital Audio Broadcasting (DAB) Distribution interfaces; Service Transport In-
terface (STI). Technical report, European Telecomunications Standards Institute
- http://www.etsi.com/, F-06921 Sophia Antipolis CEDEX - France, December
1998. ETS 300 797 - V1.1.1.

[54] Berners-Lee T., Fielding R., and Frystyk H. Hypertext Transfer Protocol -
HTTP/1.0. RFC 1945, May 1996.

[55] Bowen T., Gopal G., Herman G., Hickey T., Lee K., Mansfield W., Raitz J., and
Weinrib A. The Datacycle architecture. CACM, 35(12), December 1992.

[56] Chiueh T. Scheduling for broadcast-based file systems. In Proceedings of MO-
BIDATA Workshop. Rutgers University, 1994.

[57] Imielinski T. and Badrinath B. Mobile wireless computing: Challenges in data
management. Communications of the ACM, 37(10), October 1994.

[58] Imielinski T., Viswanathan S., and Badrinath B. Energy efficient indexing on
air. SIGMOD, May 1994.

[59] Imielinski T., Viswanathan S., and Badrinath B. Power efficient filtering of data
on air. In Proceedings of EDBT Conference, 1994.

– 81 –

BIBLIOGRAPHY BIBLIOGRAPHY

[60] The Teracom Group - http://www.teracom.se/. Medborgarplatsen 3, Box 17666
S-118 92, Stockholm.

[61] The Microsoft Corporation. WebTV - http://www.webtv.net/. Microsoft Cor-
poration, One Microsoft Way, Ste.303, Redmond, WA 98052-8303.

[62] The OpenCard Consortium. The OpenCard Framework.
http://www.opencard.org, 1999.

[63] Reports on the introduction of DAB in Switzerland. http://www.dab.ch/, Au-
gust 1999.

[64] Hansmann U., Nicklous M.S., Schack T., and Seliger F. Smart Card Application
Development Using Java. Springer (Awaiting Publication), 1999.

[65] WorldSpace Corporation. WorldSpace Radio Homepage - http://
www.worldspace.com/. 2400 N Street, Washington DC 20037 USA.

– 82 –

	Introduction
	Broadcasting Web Content
	Why use DAB?
	The Reference Implementation
	The suitability of DAB Networks for carrying Data Services

	Related Work
	Introduction
	The Boston Community Information System
	The Datacycle Project
	Broadcast Disks
	The problem of scheduling
	The Teletext System
	An MHEG Carousel Scheduling Simulator
	WebTV
	``Being Digital''
	IP Multicasting
	Reliability
	Multiple Unicast
	Other DAB based data service systems
	Alternative wireless technologies

	Component Technologies
	A DAB Transmission Network
	The DEAPspace project's DAB testbed
	Overview of the DABWeb System
	The MOT Protocol Stack
	The MOT Session layer
	Transmission and re-assembly of MOT Objects from data groups
	Ensemble bandwidth allocation for MOT data streams
	The MOT in Packet Mode
	The MOT in PAD mode

	WebFS (IBM Zurich Laboratory)
	WebFS Functionality

	Security Considerations for DABWeb
	Encryption of DABWeb content using BEAST RK
	The cryptographic security of the BEAST algorithm
	The IBM JavaCard System
	Security of data held on a JavaCard
	Overview of OpenCard
	OpenCard Card Services

	DABWeb Design
	Design Goals
	Overview of the Server system
	Overview of the Client system

	Mapping a web tree structure onto a stream of MOT objects
	Creation of a Virtual DAB data channel device driver
	Using JavaCard to decrypt a multimedia data stream
	Creation of OpenCard services for JavaCard
	Functional units of the BEAST RK algorithm
	BEAST encryption of MOT objects
	Charging strategies for decryption using the JavaCard

	DABWeb Implementation
	Client Implementation details
	Server Implementation details
	Object Serialization for Network Protocols
	Java based Serial Communications for PAD services
	Transmission of MOT Streams in Packet Mode

	The MOTDataChannel DAB Device Drivers
	Implementation of the MOTDataChannel System
	MOTDataChannel Device Driver Requirements
	Integrating MOTDataChannel with the DABWeb Client

	Device Driver Implementations
	PAD data from the Philips 752
	The Fraunhofer DSP PCMCIA card
	The BOSCH DABCore stand alone receiver unit
	The DABCore PCI based receiver

	Integration of the BEAST RK system with DABWeb
	Implementation of the BEAST RK system
	The Development of the BEAST JavaCard Applet

	The current state of the DABWeb reference implementation

	Conclusion

